Neurologie, emotionele hersenen

De behandeling van de emotie-organen kan eigenlijk alleen in directe aansluiting van die van de hersenstam  , omdat de emotie-organen de functionaliteiten van de hersenstam hergebruiken, en aanvullen. Voor het gemak zijn hier een aantal noodzakelijke elementen van voorkennis herhaald.

Net als bij de herenstam zal bij de beschrijving van de emotie-organen het erom draaien waar zaken voor dienen. In de hersenstam betrof dat de taken genaamd beweging, waarneming, huishouden en besturing. In dat kader nam de hersenstam beslissingen van de soort "vechten, vluchten, bevriezen of eropaf gaan", waarbij de regels voor het beslissen grotendeels genetisch vastliggen. Dus min of meer te beschouwen als automatismen.

De emotie-organen gaan hier beslissingen op grond van eigen ervaringen aan toevoegen. De daarvoor absolute benodigde functies zijn: opslag, heroproepen, classificering, en beoordeling. Of in wat andere terminologie: leren, planning en andere wat hogere zaken, dat wil zeggen: waar ga je met je levende lichaam naar toe om ervoor te zorgen dat de meer basale functies kunnen blijven draaien. Dit dient dus niet letterlijk genomen te worden in de menselijke zin: dat er bewust vooraf een plan wordt opgesteld - het gaat eerst om het ontwikkelen van gedragsgewoontes op de kortere termijn. De term die hier uiteindelijk voor gekozen is, is "scenario's". Voor wat betreft levende wezens toe te passen op die fundamentele zaken: voeding, vermijding van gevaar, en voortplanting.

De meest basale benodigde kennis is dat alles werkt met neuronen die met elkaar verbonden via uitlopers genaamd axonen, gebruik maken van biochemische stoffen genaamd neurotransmitters  - iedere neurotransmitter-aansluiting heeft weer een specifieke ontvanger (receptor) nodig. De meest basale neurotransmitters zijn glutamaat dat andere neuronen exciteert, en GABA dat het exciteren van andere neuronen blokkeert of inhibeert.

Naast de basale neurotransmitters introduceert en produceert de hersenstam vier modulerende neurotransmitters: dopamine (in de substantia nigra of" zwarte substantie" en vertral tegmental aera of VTA), serotonine (raphe nuclei of "randkernen"), acetylcholine (lateral dorsal nucleus en ponto-peduncular nucleus en omgeving) en noradrenaline of norepinefrine (locus coeruleus of "blauwe plek"). Substantia nigra en locus coeruleus worden ook wel eens bij emotie-organen getrokken omdat ze dezelfde stoffen gebruiken als de emotie-organen. Dit lijkt weinig zinvol (je moet dan eigenlijk ook bronnen van de andere twee er bij trekken).

Er is één orgaan dat hier de omgekeerde behandeling krijgt: normaliter ingedeeld bij de emotie-organen zijn hypothalamus en hypofyse. Er zijn goede redenen om die bij de hersenstam te rekenen. Reden één: gebruik je het criterium dat alles wat in zichtbare links-rechts varinat komt hoort bij emotie-organen en hoger, en de enkelstuks bij de hersenstam, dan is dit reden voor herindeling want van hypothalamus en hypofyse is er maar één. En ten tweede wat ze doen, is neurotransmitters in het bloed pompen om de boodschappen van de hersenen ook algemener in het lichaam te verspreiden middels neurotransmitters die dan hormonen worden genoemd. Dit is natuurlijk al essentieel voor de functies van de hersenstam.

De hypothalus ligt dus voorbij de allereerste emotie-organen, tussen de twee thalamussen in, zie de volgende illustratie:

De hypothalamus is het roodgekleurde element, en de hypofyse (Engels: pituitary gland of pituitary) is het grijze 'bolletje" dat eraan vastzit - de laatste vormt samen met de epifyse (Engels: pineal gland), die aan de achterkant van de thalamussen, de "klieren" (Eng.: glands).

De klieren zijn de enige organen die stoffen direct kunnen transporteren tussen lichaam en hersenen (die zijn biochemisch strikt gescheiden, in verband met infectiegevaren), de rol van de hypothalamus daarin is die van aanstuurder, zie de volgende illustratie

De functies van de hypothalamus zijn af te leiden uit de lijst van verbindingen ernaar  (Wikipedia, opgeslagen 02-04-2012):
  The hypothalamus coordinates many hormonal and behavioural circadian rhythms, complex patterns of neuroendocrine outputs, complex homeostatic mechanisms, and important behaviours. The hypothalamus must therefore respond to many different signals, some of which are generated externally and some internally. The hypothalamus is thus richly connected with many parts of the central nervous system, including the brainstem reticular formation and autonomic zones, the limbic forebrain (particularly the amygdala, septum, diagonal band of Broca, and the olfactory bulbs, and the cerebral cortex).

Of uit de Nederlandse versie:
  Bijna elke regio van het cerebrum staat in contact met de hypothalamus. Hierdoor is de hypothalamus betrokken bij alle aspecten van de emoties, de voortplanting, het autonoom zenuwstelsel en de hormoonhuishouding. De hypothalamus reguleert: bloeddruk, hartslag, honger, dorst, slaap-waakritme, seksuele opwinding, lichaamstemperatuur (veroorzaakt bijvoorbeeld bibberen bij kou). De hypothalamus zorgt voor een groot deel voor homeostase. Ook speelt de hypothalamus een rol bij de drie kerngedragingen te weten: vecht- of vluchtreactie, voedingsgedrag, voortplantingsgedrag.

Uit welke lijst met functionaliteiten je ook onmiddellijk de conclusie kan trekken dat de hypothalamus en hypofyse functioneel eerder bij de hersenstam dan bij de emotionele organen horen. Ook is hieruit duidelijk dat de hypothalamus en hypofyse een faciliterende functie hebben - de reden voor het afscheiden van hormonen wordt bepaald elders.

Dus nu over naar de emotie-organen, zo veel mogelijk weer van beneden naar boven - van meer basale naar meer ontwikkelde functionaliteiten.

In het globale geografische overzicht van de hersenen  liggen de emotionele organen tussen de hersenstam  en de cortex:

Dat geldt dus ook voor de functionele rol ervan. De hersenstam verzorgt basale vormen van besturing, resulterende in primitieve, genetisch vastgelegde vormen van gedrag en beweging. De emotionele hersenen bieden meer flexibele vormen van gedrag, en leren van ervaringen - dat wil zeggen: niet-genetisch vastgelegde vormen van gedrag en beweging. Daartoe moet het emotionele systeem de resultaten van eerdere acties kunnen opslaan, evalueren, selecteren, en opnieuw toepassen - een complexe reeks operaties. In de emotionele hersenen wordt die complexe taak vervuld door een vrij groot aantal makkelijk te onderscheiden functionele onderdelen, op zich meestal weer verzamelingen van kernen van neuronen. Dit in tegenstelling tot de hersenstam waarin ook vele kern-achtige structuren zitten maar die minder goed onderscheidbaar zijn, en de cortex dat eigenlijk één heel groot opgevouwen vel is.

Ondanks die relatief heldere structuur, is er altijd aanzienlijke verwarring geweest omtrent indeling en functionaliteit. Omdat de anatomische ontdekking ervan stamt van (ruim) voor enig begrip van de werking ervan, zijn de meeste onderdelen benoemd naar uiterlijke kenmerken als kleur en vorm. Hier wordt gepoogd daar wat orde in te scheppen, weer uitgaande van de evolutionaire benadering  , aangevuld met wat het meest logisch lijkt vanuit het oogpunt van het organiseren van een complexe structuur zoals dat nu door de mens zelf in de techniek gebeurd  .

De twee meest gebruikelijke namen voor de emotionele hersenen zijn "basale ganglia" uitleg of detail (Wikipedia) en het "limbische systeem" uitleg of detail (Wikipedia - in het Engels ook wel visceral brain, letterlijk vertaald: "onderbuik hersens")  - de eerste groepering is wat kleiner en ligt het dichtst bij de hersenstam. De eerste naam is ongelukkig omdat ganglia, meervoud van ganglion, het classificerende woord is voor de neuronknopen in het ruggemerg - iets heel anders van de onderdelen van de emotionele hersenen. Voor een voorbeeld van de verwarring rond naamgeving, vergelijk de Engelse versie uitleg of detail van het item over de basale ganglia in Wikipedia met de Nederlandse uitleg of detail (opgeslagen april 2012).

Het "limbische systeem" is nog wat ongelukkiger in dat er versies zijn met en zonder het onderste deel van de cortex, de cingulate cortex  - zodanig ongelukkig dat er ook suggesties zijn om de hele term maar af te schaffen.

En het derde voorgestelde alternatief: "basal nuclei" of "basale kernen", is even ongelukkig, omdat bijna alle onderdelen van de emotionele hersenen meerdere tot vele kernen bevatten en het zou handig zijn de term "kern" te beperken tot iets met een redelijk specifieke functie. Hier wordt dus "emotionele organen" gebruikt.

Vanwege de voorkeur alhier voor de evolutionaire volgorde, bestaat het aanvangspunt uit een paar overzichten van de basale ganglia. En hier ligt het eerste groeperingsprobleem, namelijk het feit dat men op het moment van schrijven er toe is overgegaan om ook de substantia negra, een deel van de hersenstam, er toe te rekenen. Dit omdat de stof die het produceert, dopamine, ook belangrijk is voor de basale ganglia. Wat, indien een juiste redenatie, ook geldt voor haar even belangrijke tegenpool: acetylchlorine, zodat ook de bron daarvan, de peduncolopontine kern (PPN) bij de basel ganglia zou moeten worden getrokken. En dan komen ook de raphe kernen in aanmerking, omdat serotonine, dat daar vandaan komt, net zo belangrijk is als dopamine en acetylcholine. En zo zit dan al de halve hersenstam bij de basele ganglia. Dit is dus weinig zinnig. Hier houden we doodgewoon de zowel anatomische als evolutionair bestaande scheiding aan: de onderdelen van de hersenstam, mesencenpahlon  en lager, horen tot de hersenstam. En de rest is diencephalon en hoger.

De eerste illustratie, die ook gebruikt is bij de beschrijving van de hersenstam  , laat de overgang van hersenstam naar de emotionele hersenen zien (deze en de andere anatomische gravures komen uit de atlas van Gray  - deze illustratie is Gray 690):

Zichtbaar zijn de laatste onderdelen van de hersenstam, substantia nigra (onder de in blauw getekende bundel aangegeven met Med. lemniscus) en red nucleus, en de eerste van de emotie-organen: corpus subthalamicus of subthalamic nucleus (in literatuur veel gebruikte afkorting: STN) en thalamus. En min of meer in omtrek helemaal bovenin: de caudate nucleus (CN). Niet zichtbaar maar in dezelfde regio als de substantia nigra (SNc/r) ligt het ventral tegmental area (VTA; dopamine), en wat lager de locus coeruleus (blauwe plek; noradrenaline of norepinephrine; LC).

Het algemeen gezien als het eerste emotionele orgaan is de thalamus, meestal getekend als bolletjes (links en rechts) op het uiteinde van de hersenstam., zie de 3D-illustratie onder:

Maar van die bolletjes komen weer vele bundels neuronuitgangen, axonen  , die wel zijn getekend aan de linkerkant in Gray 690.
    De in Gray 690 al getekende caudate nucleus, oftewel: "kern met staart" (de staart zit helemaal boven, hier in doorsnede), is in zij-aanzicht beter zichtbaar, zie twee andere overzichten van dit gebied:
 

Deze zij-aanzichten zijn met de neus links. In dit soort plaatjes zijn de verbindingen, de axon-bundels, meestal weggelaten (hierboven wel schematisch zichtbaar tussen de basale ganglia) - deze vullen de ruimte tussen de verschillende onderdelen tot een compact geheel. Het volgende plaatje is een verticale dwarsdoorsnede door de scheiding van linker- en rechter hersenhelft, gezien van voren:

Dit laat de schilstructuur van de eerste onderdelen zien: eerst komt de thalamus, daaromheen ligt de globus pallidus ("bleke bol"), dan volgt de putamen ("perzikpit") en deels daaromheen gedrapeerd ligt de caudate nucleus - die staart is natuurlijk begonnen als min om meer bolvormig met een geëvolueerde aangroei aan één enkele kant. De combinatie van deze laatste onderdelen wordt ook wel aangeduid als het striatum, naar het min of meer gestreepte uiterlijk dat ze hebben (op sommige plaatsen wordt dit "oude naamgeving" genoemd, en op andere is ze net weer "recente inzichten" geworden). De combinatie van globus pallidus en putamen heet ook wel lentiform nucleus ("lensvormige kern", als tegenhanger van de staartvormige kern). In het eerste plaatje is te zien hoe de caudate nucleus om dit alles heen ligt, en de binnenste structuren aan het oog ontrekken - voor een  duidelijke blik zie de 3D-illustratie:

Uit de oriëntaties kan men al afleiden dat hier sterke functionele afhankelijkheden achter liggen, welke bevestigd wordt door de volgende illustratie (detail van Gray 742), een horizontale dwarsdoorsnede:

Goed zichtbaar is hoe de axonen lopen van thalamus naar globus pallidus (net zichtbaar zijn de twee lagen ervan) naar putamen. Dit soort structuren zijn het natuurlijke gevolg van de structuur van de individuele neuronen, met een kern en een dunne uitgang - heb je er daar veel van, ontstaat automatisch een bolvormige structuur met de dunne uitgangen als stralen naar binnen. Het nalopen van de verbindingen tussen de structuren is minstens zo belangrijk voor het begrijpen van de werking van de hersenen als die van de losse onderdelen, zoals al blijkt uit het feit dat de ruimte ingenomen door verbindingen die ingenomen door kernen overtreft, voor de cortex met een factor twee.

De voorgaande illustratie toont ook een aantal van de lange afstandsbundels in de ruimte rond de emotie-organen: boven de horizontaal lopende bundels van het corpus callosum lopende tussen de twee hersenhelften van de cortex, net boven het midden de internal capsule, verticaal lopende bundels van hersenstam uitwaaierende naar de cortex, en onder die van thalamus naar cortex). Hieronder een gebruikelijker vertikaal (voor/achter-) aanzicht met onder de hersenstam (deel van Gray 764):

Dit wat betreft de lokalisering van de diverse onderdelen van de eerste laag.

Bij de functionele beschrijving van de emotie-organen is het gebruikelijk te beginnen met de thalamus, mede omdat de functie van de organen er direct onder: subtahalamische kern en rode kern, betrekkelijk duister is - van de rode kern wordt gemeld dat een centrum is voor de secundaire vormen van coördinatie van bewegingen, werkende in samenhang met het cerebellum., zie het Wikipedia-item  .

Als hoofdfunctionaliteit van de thalamus wordt gewoonlijk vermeld dat het het schakelstation is tussen de cortex en het niet-cortex deel van de hersenen - zoals eigenlijk al bijna automatisch volgt uit haar positie tussen die twee globale gebieden van de hersenen, zie de volgende afbeelding:


En dat dit met name geldt voor de waarnemingsorganen, omdat alle waarnemingorganen een verbinding naar een eigen kern in de thalamus hebben (behalve de geur), en de thalamus vandaar ook verbindingen heeft naar de cortex (op vele plaatsen wordt gesuggereerd dat dit directe verbindingen zijn, terwijl vele ervan verlopen via (meerdere) kernen in de hersenstam - de optische informatie komt van de superior colliculus, en niet van het oog direct).

Daarbij geldt ook weer in hoge mate de modulaire aanpak: iedere functie heeft haar eigen kern binnen de thalamus. Maar mogelijkerwijs ook met een hoeveelheid interne communicatie, want binnen de thalamus zijn er ook gebieden met verbindingen, meestal niet weergegeven, maar de belangrijkste zijn zichtbaar in de afbeelding boven, als de witte Y-vorm - het "wit" is dat van de axon-uitgangen  van de neuronen.

Een schema van  verbindingen is gegeven hieronder (gewijzigde versie van Wikipedia uitleg of detail - vergroting en compleet hier uitleg of detail ):

De afbeelding is een schematische weergave van de structuur van de thalamus naar het model van de kaart van de Londense Underground uitleg of detail : de relatieve afmetingen kloppen niet, maar de oriëntatie en de functionele samenhang wel - dit alles voor de illustratieve duidelijkheid. De witte gebieden in deze afbeelding zijn ook weer de gebieden met axon-verbindingen tussen de neuronen en dus de kernen. Let op de positie in het midden dus centrale positie van de kernen genummerd 12 en 13, liggende midden in het gebied van verbindingen, in het midden van de thalamus, en dus vermoedelijk ook een centraliserende functie hebbende. De centromediane kern, nummer 13, is daarvan de grotere, en verbonden met de volgende in de reeks van onderdelen van de emotie-organen, hier aangegeven als basale ganglia maar zijnde specifieker voornamelijk de globus pallidus (intern). Oftewel: dit zijn de verbindingen getekend in Gray742.

Niet getekend in het diagram is de reticulaire ("netvormig uiterlijk hebbende") kern die grotendeels het buitenste oppervlak van de thalamus vormt, en remmende signalen kan sturen naar de hier genummerde meer naar binnen liggende kernen.

Het bestaan van die omliggende reticulaire kern en dat van een centrale kern die signalen verstuurt naar volgende emotie-organen wijst er op dat de thalamus een integrerende functie heeft met betrekking tot de diversen aspecten van de waargenomen werkelijkheid, en ook van de al aanwezige lichamelijke en neurologische reacties hierop. De thalamus speelt dus vermoedelijk een rol in het maken van één totaal beeld van de werkelijkheid uit de diverse losse aspecten ervan. De reticulaire kern bepaalt de nadruk van de diverse aspecten in het totale beeld - bekend inmiddels is het verschijnsel dat als je mensen bezighoudt met een balspel, ze weinig tot geen aandacht hebben voor andere aspecten in de betreffende ruimte (de als gorilla verklede persoon die binnen komt wandelen), zie de afbeelding onder:

Dit voorbeeld, en er zijn uit het dagelijkse leven talloze anderen bekend, laat zien dat het proces van de verdeling van aandacht op een bijzonder basaal moment in het neurologisch proces plaatsvindt. Waarvoor de thalamus dus een goede kandidaat is, op zijn minst wat betreft uitvoering.

De rol van de thalamus als integrator en doorgeefluik is begrijpelijk en zelfs noodzakelijk, als men uitgaat van het op deze website gehanteerde model dat vanaf de basale ganglia de waarnemingservaringen en bijbehorende gedrag behandeld worden als gehele gebeurtenissen, in scenario's. Voor het kunnen maken van zo'n compleet en samenhangend beeld is het noodzakelijk dat de waarnemingsimpressies op een coherente manier worden gegroepeerd. [Daarna kunnen elementen als ruimte- en tijdservaringen er aan worden toegevoegd.]

Als volgende in de sequentie van het waarnemings- en verwerkingsproces komen dus de globus pallidus (GPi/e), putamen en caudate nucleus. Deze onderscheiden zich als groep door een raadselachtige eigenschap: ze bevatten vrijwel uitsluitend neuronen met verbindingen met remmende invloed - in vaktermen: GABA-ergetische neuronen. Dat betekent, aangezien de natuur niet (langdurig) aan niet-werkende zaken doet, dat ze deel uitmaken van een wijdere structuur en functionaliteit. Die wijdere structuur omvat de subthalamische kern, want die stuurt een vloed aan activerende signalen naar GPi/e en omgeving.

Dit komt overeen met de structuur van een (elektronische) computer, waarin de groot deel van de circuits zelf passief zijn, maar informatie aan elkaar doorgeven op commando van een centrale tijdseenheid, de klok-eenheid, die zorgt dat ze dit in de juiste tijds-volgorde doen.

Die mechanische analogie werkt ook voor de eigenschap van "alleen blokkerende neuronen". In een neuraal circuit waarin meerdere neuronen achter elkaar aan elkaar verbonden zijn, noem ze 1, 2 en 3, heeft twee keer achter elkaar een blokkerende relatie een activerende voor de twee samen: nummer 1 blokkeert het blokkeren van nummer 2, die daardoor nummer 3 niet meer blokkeert - dus nummer 1 activeert nummer 3. In de digitale elektronica is dat hetzelfde als twee omkerende porten achter elkaar, of in de wiskunde volgens het algemeen schema: -1 * -1 = +1 .

Het opeenvolgend aan elkaar doorgeven, geldt voor de structuren als geheel opzichtig al voor de combinatie globus pallidus interna, globus pallidus externa en putamen, zie de verticale doorsnede van Gray 742 boven. Het geldt dus hoogstvermoedelijk ook voor de interne structuur van deze organen, voor wat betreft de putamen en de eraan vastzittende caudate nucleus mede aangegeven door hun gestreepte uiterlijk dat ze tezamen de naam striatum heeft gegeven, en dat wijst op een interne lagenstructuur - waarbij de lagen een achtereenvolgende functie vervullen.

Voor de caudate nucleus geldt ook nog dat de staartstructuur een sequentiële functionaliteit suggereert, met als additionele aanwijzing de bruggen die op redelijk regelmatige afstand van elkaar de staart verbinden met de putamen, schematisch weergegeven in de volgende afbeelding (het werkelijke aantal verbindingen ligt in de buurt van een tiental):


Ook zichtbaar in deze afbeelding is dat de caudate nucleus eindigt in de amygdala, wat bij illustraties van de amygdala meestal wordt weggelaten. Ook hier is er een sterke suggestie dat de uitkomst van het proces van de caudate nucleus gaat naar de amygala, die dus zijnde de voorlopig laatste in de complete sequentie vanaf de thalamus.

Het veronderstellen van deze laatste relatie is een breuk met de standaardbenadering, want daarin ziet men voor de basale ganglia voornamelijk een rol in beweging en dergelijke, en voor de amygdala die in het opwekken en verwerken van emoties, met name die van angst en straf en aanverwante.

Hier worden die relaties anders geïnterpreteerd. Evolutionair gezien is het het meest logisch de ontwikkeling van de emotie-organen te bezien vanaf de hersenstam, met haar vier keuzemogelijkheden van vechten, vluchten, bevriezen of aangetrokken-zijn - de keuze waartussen verloopt volgens schema's die grotendeels genetisch vastgelegd.

Bij uitbreiding van die functionaliteit, kan de natuur zich niet veroorloven de bestaande functionaliteit over te slaan, want die is essentieel voor overleven - nieuwe functionaliteit moet dus noodzakelijkerwijs gebouwd worden op de oude. En dat gaat brengt automatisch een stap voor stap proces met zich mee: eerst wordt er wat evolutionair "geleerd". Dan komt er een volgende stap.Enzovoort. En zo ontstaat automatisch een sequentie van functionaliteiten die steeds betere inschattingen maken omtrent gedragspatronen gewenst voor overleven. Met de bijhorende neuronale organen.

En net als in de hersenstam is het natuurlijk zo dat al dan niet potentieel bedreigende situaties de voorrang krijgen. Bedreigende situaties moet op geregeerd worden met vechten of vluchten, dat wil zeggen: zodra dit duidelijk is kan de hersenstam het overnemen. Potentieel bedreigende situaties moeten worden vermeden, dus als het die kant opgaat, letterlijk en figuurlijk, moet er een signaal naar de rest van het brein om dat niet te doen en de situatie te vermijden. Dat is de bekende functie van de amygdala.

Of een situatie bedreigend is, is meestal wel duidelijk uit waarnemingen: het waarnemen van een beer of leeuw is bedreigend. Een flink deel van dit soort oordelen zit vermoedelijk ook bij de mens ingebouwd - zoals bij een vogel een donkere vlek boven zich automatisch leidt tot alarm: roofvogel!

Wat de nieuwe functionaliteiten toevoegen is dus potentieel bedreigende situaties: situaties waarvan eerder is gebleken dat ze gevaarlijk zijn, en dus eerder een waarschuwing kunnen doen laten afgaan. Al is het maar een beetje. Om dat te kunnen doen, moeten die eerdere gevaarlijke ervaringen wel worden opgeslagen. Terwijl de waarschuwing liefst zo snel mogelijk moet komen. Dat zou het snelst gaan, als de opgeslagen ervaringen zich bevinden in hetzelfde circuit als wat leidt tot de waarschuwing, oftewel: het circuit dat loopt van thalamus tot amygdala. Dat zou verklaren waarom de basale ganglia en met name het striatum zelf niet actief hoeven te zijn: het bevat informatie.

Dit is strijdig met de normale voorstelling van zaken in de wat simpelere teksten over neurologie dat de geheugenfuncties het terrein van de hippocampus zijn. Dat laatste is ook wel zo voor de normale, min-of-meer cognitieve, geheugenfuncties, maar er zijn een sterke aanwijzingen dat dit niet exclusief zo is. Zoals zo vaak het meest opvallend via de pathologie: een vrouw waarvan de hippocampus (beide) door ziekte verwoest was en die niets langer onthield dan enkele tientallen seconden, bleek wel een onaangename ervaring als een onaangenaam gevoel in het geheugen te hebben geregistreerd (bron verloren gegaan). In de wat gedetailleerdere teksten worden verschillende soorten geheugen gehanteerd, waarvan de bekendste is de tweedeling in episodisch en semantisch geheugen => . Op deze website wordt dat vertaald als een geheugen direct verbonden aan emoties, en eentje dat meer cognitieve zaken afhandelt. De eerst soort werkt dat in het circuit met de basale ganglia en amygdala, het tweede is dat met de hippocampus. Die zijn eigen circuit heeft, dat zal blijken te lijken op dat van de amygdala, waarover dus verder nu.

Er zijn drie soorten "zichtswijze" in afbeeldingen van de hippocampus: als eerste de meer globale die de locatie en vorm ten opzichte van de rest van de hersenen laat zien - eerst een statische illustratie:

Dit is de meer gebruikelijke soort afbeelding - hier een driedimensionale versie:

Deze afbeeldingen laten zien waarom de hippocampus vroeger ook wel Ammon's hoorn werd genoemd.

Hier een voorbeeld van de tweede versie:

Deze afbeeldingen geeft niet alleen de hippocampus maar ook de eraan verbonden fornix, die uiteindelijk uitloopt in twee kleine kernen: de mammillary bodies.

En tenslotte is er nog een derde variant, die er heel anders uitziet (hier in een schematische versie):

Hier is meteen duidelijk waarom de hippocampus zo heet: naar de uiterlijke vorm van het zeepaardje. Dit soort afbeeldingen is een dwarsdoorsnede van de hippocampus zoals getekend in de eerste versies, loodrecht op de lange as. Oftewel: dit is de interne structuur. Ook hier weergegeven zijn de aanliggende delen die gaan richting de cortex: dentate gyrus, parahipppocampal gyrus en entorhinal area of entorhinal cortex - tezamen duidt men dit wel aan als hippocampal complex (entorhinal betekent: ter hoogte van de neus, aan de binnenkant gelegen - oftewel: de onderkant en binnenste deel van de cortex, het dichtst bij de emotie-organen).

De functie van de hippocampus als essentieel in de vorming van het geheugen is,  in tegenstelling tot de meeste onderdelen van de emotie-organen, al vrij lange tijd bekend. Ook die kennis is ontleend aan de pathologie: bij een patiënt genaamd H.M. na zijn dood bekend als zijnde Henri Molaison uitleg of detail , werden vanwege hevige epileptische aanvallen beide hippocampi weggenomen. H.M. verloor de capaciteit tot het opslaan van gebeurtenissen in zijn geheugen voor zaken die langer dan enkele tientallen seconden geleden ware. Maar hij bleef toeging ophouden tot zijn oude herinneringen en kon kruiswoordpuzzels maken met woorden uit die tijd. Waaruit meteen twee dingen zijn af te leiden: de hippocampus is niet het geheugen zelf, en ten tweede: de hippocampus speelt geen rol bij het ophalen van herinneringen uit het verleden. Maar dus wel een essentiële rol bij het maken van nieuwe herinneringen.

Sinds kort, schrijvende in 2014, is ook met hoge waarschijnlijk welke essentiële functie de hippocampus vervult: het analyseren van de binnengekomen ervaringen in algemene concepten  . Dat wil zeggen: het geheugen slaat het waarnemen van een persoon in beeldveld niet op als een foto van een persoon, maar als een contour, een contour van een mensen, een contour van een mens van de vrouwelijke kunne, een contour van een mens van de vrouwelijke kunne van de leeftijdsgroep tussen 20 en 40, een contour van een mens van de vrouwelijke kunnen van de leeftijdsgroep tussen 20 en 40, met blond haar, enzovoort. En ondertussen begint meteen het vergelijken, want daarop kan absoluut niet gewacht worden want de volgende waarnemingsindrukken dienen zich al weer aan. Dus na stap één wordt bekeken: beweegt de contour - beweegt de contour snel, enzovoort. Dat gebeurt al in de hersenstam. Is er geen ingrijpen van de hersenstam nodig, is de rest aan de beurt: is het een mens, dan wordt vergeleken met alle mensen die geassocieerd worden met de actuele omgeving - is het bijvoorbeeld in een winkel, en komt er een contour binnen vanuit opening achterin, dan zal na de identificatie als persoon onmiddellijk de suggestie komen: dat is vermoedelijk de winkelruit, bijna bevestigd door niet meer dan een wit voorschot als het bijvoorbeeld bij de slager is, en definitief bevestigd bij ook maar de geringste uiterlijke gelijkenis. Dat het zo werkt, blijkt uit de verrassing die mensen voelen als de uitkomst niet klopt met zo'n verwachtingspatroon. En dat verwachtingspatroon is dus gebaseerd op analyse in concepten, en vergelijking van die concepten. Beginnend grof en daarna steeds fijner tot herkenning is bereikt, waarna de cyclus aangaande de volgende waarnemingservaring kan beginnen.

Als dit de rol is van de hippocampus, zijn er meteen meerdere nieuwe vragen, waaronder als eerste: wat is dan wel de plaats van het geheugen. De aanwijzingen daarvoor liggen natuurlijk in de verbindingen van en naar de hippocampus. Daarvan is de bekendste de combinatie van fimbria, fornix en mammilary bodies, geïntroduceerd boven. Dit is behoorlijk onwaarschijnlijk als plaats het "het geheugen", dat wil zeggen: het permanente geheugen, gezien de beperkte omvang ervan.

Dus als eerste dit pad verder gevolgd, waarvoor dienen de volgende twee illustraties (van hier => en hier uitleg of detail ) - de eerste is wat overzichtelijker, de tweede bevat wat meer detail. In beide overzichten is de voornaamste afscheiding het corpus callosum, wat hier is een dwarsdoorsnede van de hersenbalk (anterior commissure is een veel kleinere verbinding tussen de hersenhelften en is hier dus ook in doorsnede). Daarboven ligt de cortex, en eronder dus de emotie-organen:
 

De direct daaronder als verticale scheiding ligt de fornix, en het septum pellucidem is de horizontale scheiding tussen de twee hersenhelften. Ook al genoemd dus ter verdere oriëntatie kunnen dienen de amygdala en de hippocampal formation/complex. En als eerste uitbreiding is hier net zichtbaar dat de fornix, voordat hij afbuigt terug naar achteren, een aftakking heeft die naar voren loopt, naar de septal nuclei, horend bij de nucleus accumbens (niet weergegeven en verder naar voren liggend, onder direct links van de septal nuclei waar nog wat verbindingen uitkomen) - septal nuclei en nucleus accumbens vormen tezamen de genotscentra van de emotie-organen, dat wil zeggen: de tegenhangers van de amygdala. Ze zijn verbonden met de hersenstam (VTA) via de medial forebrain bundle  , deels weergegeven in de bovenste illustratie, vanwaar ze hun dopamine krijgen.

De tweede extra zichtbare verbinding is de mammilothalamic tract, die van de mammilary bodies loopt (hier "omhoog") naar de anterieure kern van de thalamus. De derde is van de mammilary bodies naar een niet benoemde kern, die (volgend uit andere literatuur), de nucleus basalis is. Vanwaar dit pad weer verder gaat naar de habenular nucleus, die men op evolutionaire gronden indeelt tezamen met de hypothalamus (zie verderop), die via de stria medullaris verbonden is met de septal nuclei. Oftewel: er is een direct pad van hippocampus naar septal nuclei, en eentje met een omweg  - dat is vermoedelijk een voorbeeld van het aangebouwd zijn van nieuwe functionaliteiten aan oude, met behoud van de oude.

En dan is er nog een verbinding van de hippocampus buiten de ruimte van de emotie-organen om. Die start in de dentate gyrus als fasciolar gyrus en wordt ook wel de fascia dentate hippocampi genoemd  (vertaald: "de bundels komen via de dentate gyrus van de hippocampus"). Dit zijn bundels (fascia is het meervoud van fasces oftewel bundel) die gaan  naar een (dunne) laag tussen corpus callosum en cortex, hier wel getekend maar niet benoemd, die het indusium griseum, "griseum" aanduidend dat het "grijze stof" is oftewel bestaat uit neuronkernen (maar er lopen ook verbindingsbundels op deze plaats, dan aangeduid als cingulum). Het indusium griseum heeft vele verbindingen met de cingulate cortex erboven. De verbindingen lijken ook helemaal verder door te lopen, en komen uiteindelijk ook weer uit bij de septal nuclei en omgeving.

Deze paden zijn ook al vroeg in de geschiedenis van de neurologie opgevallen, en hebben aanleiding gegeven voor diverse naamgeving en indeling. De oudste is die van de laatste als Papez-circuit  (naar de ontdekker - afbeelding onder links), of visceral brain  , maar het meest bekend geworden als het limbic system of limbische systeem  ("randsysteem", liggende aan de rand van de cortex - afbeelding onder rechts):


Als Papez-circuit wordt het uitgewerkt als  (Wikipedia):
  hippocampal formation (subiculum) → fornix → mammillary bodies → mammillothalamic tract → anterior thalamic nucleus → cingulum → entorhinal cortex → hippocampal formation.

Het cingulum is een verzameling verbindingen in hetzelfde gebied als het indusium griseum, zie boven. De verbinding van thalamus naar cingulum makt deel uit van de internal capsule, zie boven (Gray 742). Afgekort wordt het circuit:
  hippocampus  → fornix → mammillary bodies → mammillothalamic tract → thalamus → cingulum → entorhinal cortex → hippocampus.

Waarbij volgens de eerste ontdekkers en diverse latere uitbreidingen het circuit de drager is van de emoties.

De werkelijke functie valt weer af te leiden uit de neuropathologie, met als één van de langer bekende verschijnselen het syndroom van Korsakov uitleg of detail , de gevolgen van voornamelijk ernstig alcohol-misbruik: verslechterde bewegingscoördinatie, maar als meest opvallend: geheugenverlies, dat wil zeggen: het verlies van het maken van nieuwe herinneringen (anterograde amnesie). Later werd vastgesteld dat er sprake is van schade aan de anterieure thalamische kern. Ook bekend als oorzaken van anterograde amnesie: schade aan de fornix, de mammilary bodies, en al genoemd; de hippocampus zelf. Allemaal wijzend naar één en dezelfde conclusie: het Papez-circuit is dat van nieuwe geheugenvorming.

Met deze aanname omtrent het Papez-circuit en de eerdere beschrijving van het circuit van basale ganglia en amygdala, hebben we hier dus twee vormen van geheugenvorming - in beelden ruwweg samen te vatten als onder, met links de caudate nucleus in het groen en de amygdala in het geel, en rechts hippocampus plus fornix in het groen en septal nuclei plus accumbens en mammilary bodies in het geel:

De gelijkenis is opvallend - vooral slaande op het sterk verlengde pad vanaf de primaire structuren (basale ganglia versus hippocampus-complex) naar de secundaire: amygdala versus septal nuclei en accumbens. Het eerste circuit draait (van deze kant bezien) rechtsom, en het tweede linksom. De keuze voor het gebruik in bovenstaande alinea voor de termen 'primair' en 'secundair' ligt in de bekende rol van amygdala en septal nuclei plus accumbens: de eerste gaat over de negatieve beoordeling van gedrag, en de tweede over de positieve. Het zijn beide beoordelingscentra. En beoordeling komt na de analyse - eerst moet je weten wat je ziet, voordat je het kunt beoordelen. De voorgaande gebieden bevatten geen neuronen voor de vier modulerende neurotransnitters, en, zoals al genoemd, het amygdala voor-circuit bevat zelfs weinig exciterende neuronen.

In de techniek zijn er een aantal bekende redenen voor zo'n sterk uitlopende constructie: een vorm van filteren (in de chemie), en een vorm van tijdsvertraging (met name de elektronica en computerhardware). Hier kan uitstekend sprake zijn van beide functionaliteiten, want ze liggen in elkaars verlengde: hoe verder in een filter, hoe meer vertraging.

Over de hippocampus is dus bekend dat het de gewaarwordingen vertaalt in abstractere concepten. Ook dat is al vorm van filteren, die op natuurlijk wijze aanleiding geeft staartvormige en andere toelopende constructies, als je aanneemt dat dat abstraheerproces verloopt in fasen: van de rijkheid en veelheid van de basisconcepten staande dicht bij de nog rijkere waarnemingen, tot een steeds verder afnemend aantal steeds abstracter wordende concepten. Het afnemen van het aantal concepten overeenkomend met afnemende omvang van het filter.

Wat betreft het hippocampus-circuit zijn er dus zeer sterke aanwijzingen voor een filterfunctie. Het lijkt voor de hand liggend om deze functie ook toe te kennen aan het amygdala-circuit. De al genoemde op regelmatige afstand liggende bruggen tussen caudate nucleus en putamen, zie ook onderstaande illustratie ...

....mogelijk staande voor diverse fasen van terugkoppeling in het proces, zijn daarvoor een verder aanwijzing: iedere brug staat voor een verdere fase in het filter.

En één zaak dringt zich ook redelijk sterk op: die twee circuit zijn ongeveer even lang - hoogstvermoedelijk ter bewaring van een of andere tijdsrelatie tussen de twee processen. Iets waarvoor de noodzaak ontleend kan worden door het feit dat zowel amygdala als mammilary bodies en septal nuclei en accumbens gezamenlijke verbindingen hebben met meerdere andere onderdelen van de emotionele hersenen - en als die een functie hebben om de impulsen van de amygdala en de andere tegen elkaar af te wegen of anderszins te combineren, is het zaak dat die impulsen redelijk tegelijk aankomen.

Dan is er nog een derde aanwijzing: in artikelen die niet specifiek over het onderwerp zelf gaan, wordt de term "geheugen" meestal generiek gebruikt, zie bijvoorbeeld dat over het Korsakov-syndroom. In literatuur specifiek gaande over het geheugen, worden er echter meerdere soorten geheugen geïntroduceerd .Een gebruikelijke tweedeling is die in episodisch en semantisch geheugen. Bij de gevallen van anterograde amnesie, blijkt het in werkelijkheid te gaan om dat deel van het geheugen dat gebeurtenissen en feiten vastgelegd. Het geheugen voor emoties blijkt minder of niet beschadigd. Dat suggereert als eerste ten stelligste dat er twee gescheiden geheugenprocessen zijn, volgens de tweedeling die ook hier geïntroduceerd is: En ten tweede dat de tweedeling niet "episodisch" en "semantisch" is maar "emotioneel" en "cognitief". Dit komt overeen met de resultaten van de alhier gegeven beschrijving van de "mechanica"  van de onderdelen van de emotie-organen, puur gebaseerd op fysieke relaties en het bekende doel van het systeem: het beoordelen van gedrag. Wat beschadigd raakt bij anterograde amnesie is het hippocampus circuit - niet dat van de amygdala.

De neuropathologie leert ook dat deze beschrijving van het hippocampal circuit nog niet compleet is. Want ook voorkomend bij meerdere gevallen van schade aan het geheugenproces, naast (anterograde) amnesie is het verschijnsel van confabuleren. Confabuleren is het vertellen van verhalen over gebeurtenissen die nooit hebben plaatsgevonden, voorzien van alle mogelijke details die dus ook verzonnen  zijn. Dit is niet "liegen" of "fantaseren", want die beide veronderstellen een vorm van bewustzijn dat er iets niet-reëels verteld wordt. Bij confabulatie is ieder besef daarvan afwezig - het slachtoffer verteld de zaken zoals ze zich daadwerkelijk aan zijn geest voordoen. Iets gooit de normale gang van zaken door elkaar, en dat iets zit ook in het hippocampal circuit, verteld de neuropathologie. Daarom en nog wat nadere analyse van het bijbehorende proces noodzakelijk.

Al eerder is opgemerkt dat de analyse in concepten gedaan door de hippocampus noodzakelijk is om zo vroeg mogelijk tot een herkenning van een waarnemingservaring te komen - wat ten kost gaat van de precisie want precisie zit in de details en de details worden aanvankelijk overgeslagen. Desalniettemin is precisie ook een belangrijk streven, hoewel dus misschien niet meteen ter plaatse en ten tijde relaiseerbaar. Het is wel mogelijk de tijd nodig voor een preciezere analyse te nemen, als die tijd er is. Dieren zijn bewegers kunnen dit doen door zich te begeven naar een plak die bescherming biedt van normale dagelijkse gevaren en andere ingewikkelde ervaringen. En de natuur heeft een dergelijke periode verschaft in de vorm van de "nacht", mede inhoudende sterk verminderd zicht, ook voor jagende mede-diersoorten.

Het is inmiddels redelijk duidelijk en bekend dat tijdens de slaap de hersenen de geboden tijd gebruiken voor het verwerken van ervaringen opgedaan tijdens de dag. Dit kan hier verder geoperationaliseerd worden: tijdens de slaap worden gedurende dag min-of-meer tijdelijk opgeslagen ervaringen opnieuw opgehaald en door het analyseproces van de hippocampus en omgeving gehaald. de uitkomst van die nadere analyse wordt opgeslagen in et permanente geheugen. Dat wil zeggen dat tijdens de slaap de informatiestroom ook omgekeerd verloopt: er wordt informatie uit het geheugen gehaald. Ook deze stroom moet in het hippocampal circuit terug te vinden zijn, en er moet tussen de twee processen omgeschakeld kunnen worden. Overigens is het bestaan van de ophaal-functie ook al af te leiden uit het bestaan van een opslag-functie, het geheugen zelf, want opslag zonder ophalen is zonloos.

En iets dergelijks geldt op een hoger niveau: de nadere analyse van opgeslagen ervaringen kan leiden tot twee soorten correcties: de opgeslagen ervaring moet gecorrigeerd worden, of, door vergelijking met andere ervaringen, er blijkt dat het analyseproces zélf gecorrigeerd moet worden.

Dat laatste is min-of-meer een draaipunt in het hele proces: het draait om het beter leren omgaan met de dagelijkse wereld, dat wil zeggen: beter dan volgens de opgelegde automatismen van de hersenstam, maar dan moet dat proces  ook wel kunnen leren van die dagelijkse omgang. En "leren" kan hier dus ook verder geoperationaliseerd worden: "leren" is (onder andere) het verbeteren van het analyseproces zoals dat plaatsvindt in de hippocampus. Ook dat vindt voor een belangrijk deel plaats tijdens de slaap.

Zonder te weten hoe een herkenningsproces intern werkt, zijn er twee manieren bekend om het proces te ijken - in vaktermen: het vermijden van "false negatives" en dat van "false positives". Het eerste is het niet-herkenen van iets dat eigenlijk wel onder bedoelde groep zou moeten vallen: je herkent de rode slangenwagen niet als brandweerwagen omdat je herkenningssysteem is ingesteld op "rode wagen met ladder". Het tweede is het herkennen als iets dat bij de groep hoort dat dat eigenlijk niet zou moeten zijn: je herkent een rode tankwagen als brandweerwagen omdat je herkenningssysteem is ingesteld op "rode wagen".

De eerste vorm van ijking kan door het herkenningssysteem een grote reeks gevallen voor te toveren die het zou moeten herkennen, een groot aantal soorten brandweerauto's, en het systeem zodanig aan te passen net zo lang tot het inderdaad alle gevallen herkent. In het geval van het meest basale herkenningsproces, dat van een regelmatig patroon zoals een oog dat doet => , voer je het herkenningsysteem een groot aantal regelmatige patronen voor en past het systeem aan tot het ze allemaal herkent.

Bij de tweede vorm van ijking doet men bijna hetzelfde, maar nu met "niet te herkennen" zaken - een groot aantal zaken die geen brandweerauto zijn en het systeem aanpassen net zo lang tot het inderdaad geen meer herkent. Of in het simpele geval: een groot aantal onregelmatige patronen en het systeem net zo lang aanpassen tot het inderdaad geen patroon meer herkent.

Deze beide processen zouden wat betreft het herkenning proces van de hersenen plaats moeten vinden tijdens de slaap. Dat van regelmatige patronen is een duidelijke aanwijzing voor, namelijk de vrij regelmatige golven die dan een tijd zichtbaar zijn in het electro-encefalogram of EEG:

Dit is geen absolute regelmaat, maar een EEG is het netto gezamenlijke resultaat van alle hersenprocessen die zich op dat moment afspelen, en dan is dit bijzonder regelmatig.

Voor het opwekken van regelmatige processen zijn geen grote structuren nodig - dat van het dag-nachtritme is het brein is betrekkelijk klein. het is niet bekend welke onderdelen van de emotionele hersenen zorgen voor de regelmatige patronen nodig voor de ijking.

Van het onregelmatige ijkproces is geen uitwendig golfpatroon herkenbaar, omdat de optelling van onregelmatige patronen als nettoresultaat nul of niets oplevert. Maar in tegenstelling de bron van regelmaat is een mogelijke bron van onregelmaat wel fysiek aanwijsbaar. Want van een bron van onregelmaat verwacht je dat deze er ook onregelmatig uitziet. Er is een gebied dat heel; concreet aan deze eis voldoet, met de naam substantia innominata, dat er zo onregelmatig uitziet dat het oorspronkelijk geen naam kreeg behalve deze want die betekent "substantie zonder naam" - en dan natuurlijk ook zonder bekende functie. Ze was ook zichtbaar in het meest gedetailleerde overzicht van de emotie-organen, zie de herhaling onder:

Niet benoemd hierin is een bruin gebied aan de onderkant van de ruimte van de emotie-organen, direct boven de blauwe verbindingsstructuur van de stria terminalis - het is getekend als een bruine smurrie zonder duidelijke structuur - het strekt zich uit verder naar voren. Hier een illustratie waarin het wel benoemd is:

Dit is een (zeldzame) frontale doorsnede, ter hoogte van het basal forebrain - zichtbaar als bovenste groen: caudate nucleus, groen daaronder: putamen en daarbinnen globus pallidus, geel: septal nucei, wit: de anterior commissure, de voorste bundel verbindingen tussen linker- en rechterhelft van de cortex, paars: basal nucleus region, rood: amygdala, en blauw (rechts deels weggesneden): substantia innominata.

De veronderstelling is deze: tijdens de slaap worden uit het geheugen eerder ondergane scenario's opgehaald. Die scenario's zijn geen geïntegreerde beelden, maar combinaties van abstracte concepten zoals "mens", "vrouw", "blond" enzovoort voor de omschrijving van een enkele vrouw. En dit dus voor aspecten van alle opgeslagen scenario's. Die samengestelde en samenhangende bundels van concepten worden toegevoerd aan een onregelmatig gebied, waaruit nieuwe bundels van minder- , weinig- tot niet-samenhangende concepten ontspruiten. Die weinig- tot niet-samenhangende bundels worden gevoerd aan het herkenningssysteem, dat geijkt wordt op het niet-herkennen ervan als "bestaande werkelijkheid". Die weinig- tot onsamenhangende bundels van concepten spelen zich af tijdens de slaap. Maak je iemand wakker, rapporteert hij de aanwezigheid van deze bundels als "dromen".

Tijdens de waakzame periode van het brein wordt dit gebied natuurlijk uitgeschakeld. Maar alle onderdelen van het brein kunnen disfunctioneren, dus ook het in- en uitschakelen van dit gebied. Raakt het ingeschakeld, moeten mensen bijzonder eigenaardige gewaarwordingen krijgen. Die voor hen op dat moment even reëel zijn als daadwerkelijke gewaarwordingen, omdat daadwerkelijke gewaarwordingen ook niets meer zijn dan stromen informatie in het brein. Dit komt overeen met de bekende verschijnselen van psychose en schizofrenie.

En het geschetste model verklaart de al genoemde verschijnselen waargenomen bij herseninfarcten aan de anterior communicating artery (ACoA). Er zijn twee effecten (memorylossonline.com, by Daniel Pendick uitleg of detail ):
  The patients that DeLuca works with confabulate because of a rupture in a tiny blood vessel in the brain called the anterior communicating artery (ACoA). The rupture of this tiny artery temporarily cuts off the normal flow of oxygenated blood to areas of the brain that are essential to the proper recall of memories. The damage caused by an ACoA rupture can vary from one person to another, both in the location and the degree of damage. And the symptoms are also diverse: the person can suffer memory impairment alone, or memory impairment accompanied by confabulation.

Het geheugenverlies laat zien dat de getroffen gebieden in de informatiestroom naar het geheugen liggen:
  For reasons not entirely clear, damage to the basal forebrain can impair the ability to form lasting memories from recent experiences

Het basal forebrain is het gebied waar we het hier over hebben. Overigens is het ook mogelijk dat de schade veroorzaakt door zuurstoftekort niet het inschakelen van een concepten-verhakselaar veroorzaakt, maar er zelf eentje creëert, door het ontstaan van onregelmatige "gaten" in een bestaande regelmatige structuur.

Tijd voor een tussentijdse samenvatting. Wat hiervoor besproken is, is nog steeds niets meer dan het formuleren van de eisen aan een systeem om te leren van dagelijkse ervaringen en mogelijke invulling ervan. Bovenop de al bestaande functionaliteiten van de hersenstam. Dus met nog steeds dezelfde vier basale handelings-alternatieven van "vechten" enzovoort. Hoe deze twee met elkaar communiceren om ervoor te zorgen dat het wenselijke gedaan wordt, komt verderop. De verdere details van het analyse-proces in de hippocampus en met name het proces van de slaap staan elders => . Hier gaat het eerst verder met de verfijningen van het beslissingen-arsenaal die het leren en uitgesteld reageren bieden.

De vermoedelijk belangrijkste vormen van nieuw subtieler gedrag zijn groepsvorming en samenwerking.

Het leven in groepen heeft diverse voordelen die het ontstaan ervan verklaren: meer ogen dus eerder waarschuwingen voor gevaar, meer neuzen, dus eerder de geur van voedsel, enzovoort. In een verdere fase het delen van voedsel: het individu houdt beschikbaar voedsel niet meer alleen voor zichzelf, maar laat dit deels over aan een groepsgenoot die er meer mee gediend is. Zodat deze overleefd en later jou weer kan helpen, zodat de nettosom voor beiden over langere tijden positief is.

En dit geldt in versterkte mate voor het nakomelingenschap: vissen doen al een aantal dingen goed ten opzichte van voorgaande wezens, maar gewoon je eitjes laten vallen in een kuiltje en dan wat zaad erover heen, is duidelijk weinig effectief in het overbrengen van in het harde leven geleerde ervaringen.

Ook groepsvorming en samenwerking moeten als boodschappen overgebracht worden in het zenuwstelsel,dat niets anders is dan een verzameling neuronen, met verbindingen tussen de neuronen, die werken door de doorgave van signaalstoffen. Kortom: er zijn ook nieuwe signaalstoffen, nieuwe, zeg maat "tertiaire" neurotransmitters nodig (primair: glutamaat en GABA, secundair: dopamine enz.). Daarvan is er voor het uitgebreidere emotionele systeem een uitgebreide lijst: orexine, oxytocine, vasopressine, enzovoort, waarvan er een paar behandeld worden aan de hand van wat er tot nu toe over bekend is. Merk daarbij op dat de literatuur talloze zaken op één hoop gooit,door alles te noemen waarbij de betrokken stof betrokken is. Daarin dient één essentiële schifting gemaakt te worden: de rol als neurotransmitter of die als hormoon. Als neurotransmitter werkt de stof alleen op die plaatsen, andere neuronen, waar de betreffende stof door middel van axonen naar toe wordt geleid. Als hormoon komt het in de bloedbaan en activeert het dus alle plaatsen die gevoelig zijn voor het hormoon. Als er bij een stof vermeld, is dat het bloeddrukverlagend werkt en dat het zorgt voor partnerbinding, en beide slaan op de werking als hormoon, treden beide tegelijk op. Of beide tegelijk niet. Dus vele in de literatuur genoemde combinaties kunnen doodgewoon niet. Bij het lezen dient altijd zorgvuldig in de gaten gehouden te worden over welke rol men het heeft, en eigenlijk is informatie zonder deze scheiding onbetrouwbaar.

De bekendste tertiaire emotie-neurotransmitter is oxytocine  (Wikipedia), aanvankelijk ook wel gedoopt tot "knuffelhormoon"  . Dat was omdat aangetoond werd dat het knuffelen van baby's door de moeder dit hormoon vrijmaakt. Wat vermoedelijk dus, net als bij angst en die uitspraak van William James, andersom ligt: omdat het hormoon wordt vrijgemaakt, knuffelt de moeder de baby. Iets dat dus ook zal gelden voor alle andere emotie-neurotransmitters/hormonen.
    Er is in de literatuur geen specifiek orgaan of kern gevonden die de oxytocine-neuronen in de hypothalamus activeert.
    Relatief kort na de benoeming van oxytocine als "knuffelhormoon",  en op het moment schrijven, 2013, zeer recent, kwam er een koude douche voor de meer ideologisch ingestelden in dat oxytocine ook actief bleek bij het optreden van conflicten tussen groepen. Waarop de nuchtere conclusie kan worden getrokken dat oxytocine doodgewoon de neuromodulator is betrokken bij het proces van "binding tot" - moeder tot kind, voetbalsupporter tot club eb supportersvereniging, enzovoort. En het bestaan van groepen houdt automatisch het bestaan van niet-leden van de groep in. Die dus geen deel hebben aan de binding. En waarvoor dus de primitievere impulsen gelden: "onbekend" is "(potentieel) gevaar". Experimenten gericht om aan te tonen dat mensen naargeestig tegen elkaar kunnen gaan toen als je ze indeelt in zichtbaar onderscheidbare groepen, gaan in feite over de werking van oxytocine. Het feit dat dit soort experimenten tot nu toe altijd bij blanken zijn gedaan, en de uitkomsten altijd met blanken worden geassocieerd onder gebruik van de ter"men 'xenofobie" en "racisme", is ook een gevolg van de werking van oxytocine: de groep die dit doet, sociologen en aanverwante en dat wil zeggen: hogeropgeleiden, is ook een sociale groep, en die sociale groep keert zich tegen mensen van buiten hun sociale groep: de (blanke) lageropgeleiden.

De mate van groepsvorming is ook een vrijwel directe, dat wil zeggen: zonder een tussenstap via de psychologie, sociologische, maatschappijbepalende, factor. De route binnen de hiërarchie van deze website is neurologie: neurotransmitter oxytocine psychologie: bindingsgevoel sociologie: groepsbinding en samenwerking. De bekende stelling bij bepaalde groepen politici en economen dat de mens in principe een concurrerend en individualistisch wezen is, is volstrekt onjuist. Bewezen door het bestaan en de fundamentele rol van oxytocine.

De tweede hier behandelde emotie-neurotransmitter, vasopressine, is nauw verwant, biochemisch en qua functie, met oxytocine - het wordt ook wel "de mannelijke variant van oxytocine" genoemd. Vasopressine wordt geassocieerd met monogamie, mede naar aanleiding van onderzoek aan de prairie vole (prairie woelmuis)  , een knaagdiersoort uit Amerika, die zich onderscheidt van nauwe verwanten door monogamie. Onderzoeken hebben beide kanten op aangetoond de relatie tussen de werking van vasopressine en monogamie. Het betrokken emotie-orgaan wordt genoemd als (hoogstwaarschijnlijk) het ventral pallidum (de globus pallidus wordt ook wel genoemd het dorsal pallidum ("meer naar achter") en het ventral betekent "meer naar voren") en is een deel van het basal forebrain in de buurt van de substantia innominata - zei de illustratie met de verticale doorsnede boven.

De uitkomst van die experimenten is samen te vatten als "er is een directe connectie is tussen monogamie en een prominente rol van vasopressine". aangezien dit deel van de hersenen een grote overeenkomst vertoont binnen alle zoogdieren, zal dat ook gelden voor de toepasbaarheid en de uitkomsten van dit soort experimenten. Bij de soort homo sapiens zijn er ook duidelijke verschillen tussen etnieën aangaande monogamie. De ervaringen met de soort homo sapiens laten ook de overeenkomst zie tussen oxytocine en vasopresssine, omdat bij de groep waar vasopressine minder actief lijkt (de creolen  ), ook de groepsbinding en dus de oxytocine minder lijkt te werken.

Oxytocine en vasopressine gaan duidelijk over de meer primaire emoties waar een mens (en dier!) aan onderhevig is. In ieder geval bij de mens zijn er meer, of veel meer, en ook wat subtielere emoties. de uitgebreide behandeling daarvan neigt naar de psychologie in plaats van de neurologie, en zal hier verder overgeslagen worden. Nog even aangestipt wordt de vraag van een mogelijke één-op-één relatie: het zou een aantrekkelijke want versimpelende zaak zijn als de (basis)emoties één-op-één verbonden konden worden aan ieder hun eigen neurotransmitter. het is vooralsnog onduidelijk of dit zo is.

Dit dan voor zover de emotie-organen als alleenstaand onderdeel. Net zo belangrijk als dit is natuurlijk hun communicatie met de rest van het brein. Voor wat betreft de hersenstam, de onderkant, is dat in feite al gebeurd omdat er hier van onderop wordt gewerkt. Hier wordt dit aangevuld en uitgebreid met de band met de bovenkant, de cortex.

Het voorbeeld dat daarvoor gebruikt wordt, is dat van het bewegingsapparaat, omdat er duidelijke invloeden zijn aan te wijzen van alle drie de hoofdonderdelen: basale coördinatie gebeurd in de hersenstam en kleine hersenen, tweede-orde ingrijpen is er vanuit de emotionele hersenen, maar in normale, dat wil zeggen: rustige omstandigheden, kan de gang van zaken overgelaten worden aan het nog langzamere apparaat van de cortex, die, bij wijze van spreken, eerst gaat nadenken voordat hij iets doet.

De samenwerking tussen deze drie lagen heeft de natuur geregeld middels een veelvoud van terugkoppellussen (Engels: loops) - ook weer omdat nieuwe functionaliteit de oude, in ieder geval aanvankelijk, eerst moet aanvullen en niet direct kan vervangen. Onderstaand een voorbeeld van een dergelijk circuit, wat een schematische voorstelling is van een van de circuits die de terugkoppeling regelen van het bewegingsapparaat:

Dit is een gewijzigde versie van een illustratie oorspronkelijk staande hier uitleg of detail , ook daar vervangen maar ook staande hier uitleg of detail , en waarvan een andere versie staat hier  . Het doel van de wijzigingen (naast het verwisselen van de kleuren rood en blauw om aan te sluiten bij de hierop volgende illustratie) was ten eerste om de onderdelen op hun juiste relatieve locatie te krijgen: van hersenstam onderaan naar cortex boven - en ten tweede om de aanwezigheid van meerdere lussen te verduidelijken. De gekleurde pijlen zijn de neuronale verbindingen, in feite doodgewoon de axonen, met in blauw de activerende (glutamaat) en in rood de blokkerende (GABA). Merk op dat twee achtereenvolgende blokkerende pijlen in hetzelfde pad neerkomen op een enkele blauwe: de eerste blokkerende remt het blokkeren van de tweede - in het diagram: het striatum activeert via de GPi de thalamus. De paarse pijl staat voor het dopamine door de substantia negra compacta afgegeven aan het striatum waardoor het SNc de lus aanzet tot meer activiteit - moduleert. Niet in deze tekening weergegeven maar vermoedelijk wel aanwezig is ook een remmende modulerende neurotransmitter.

De bovenstaande schema hoort bij de onderstaande illustratie die een meer reële weergave is van dit circuit:


Zichtbaar gemaakt zijn beide hersenhelften, met aan de linkerkant de normale situatie van een gezond persoon als alles redelijk in evenwicht is. De rechter komt overeen met een tekort aan dopamine, en leidt fysiologisch tot de verschijnselen van de ziekte van Parkinson: trillingen in de beweging. Trillingen zijn meestal een aanwijzing voor storingen in terugkoppellussen van een besturingssysteem.

De clou van deze opbouw is dat het verbindingssysteem tussen de drie lagen wordt opgebouwd met primaire neurotransmitters, zodat zowel emotie-organen als cortex direct kunnen aansturen met modulerende neurotransmitters, en ook de hersenstam de zaak, in geval van nood, de zaak kan overnemen door de signalen van die kant te blokkeren.

Dit is dus vermoedelijk de manier waarop de meeste communicatie en samenwerking tussen de drie hoofdonderdelen van de hersenen verloopt, met voor ieder van de specifieke functionaliteiten specifieke onderdelen uit de drie lagen geselecteerd. Het meest essentieel voor de bewust denkende mens is vermoedelijk de manier waarop de de toestand van met name het analyse- en filterproces van het hippocampal complex het beeld van de werkelijkheid in het bewustzijn beïnvloedt en bepaalt, en, als hoopvolle mogelijkheid: andersom.

De diepgang van de invloed van de toestand van de toestand van het hippocampal circuit blijkt uit het confabuleren: wat eruit komt, wordt door de mens als de echte werkelijkheid ervaren - zonder signalen van het tegendeel hem gegeven door een medemens.

Hierin schuilt ook de belangrijkste vlakuil van het menselijke denken: als iemand een mening over de werkelijkheid heeft gevormd, kan deze mening het analyse-proces beïnvloeden. Dat analyse-proces gaat dan filteren op waarnemingen die zijn mening bevestigen - en filtert tegenovergestelde waarnemingen uit: de moslims ziet in het gepaard blijven van moskeeën na de tsunami van 2004 als een teken van God - het feit dat de tsunami dan ook een teken van God is, wordt uitgefilterd. Hetgeen zich niet beperkt tot gelovigen, maar ook in nauwelijks verminderde mate geldt voor alle ideologieën, en in geleidelijk afnemende mate voor allerlei andere ideeën.

Maar ook het omgekeerde is mogelijk: het feit dat ook de hippocampus in circuits met terugkoppellussen zit, kan de beïnvloeding ook de andere kant op. Al in het Papez-circuit zit de mogelijkheid om via de cingulate cortex de hippocampus te beïnvloeden. Daarvoor zijn diverse praktische aanwijzingen: al vrij lang bekend is het mashmellow-experiment waarin kinderen de keuze wordt voorgelegd: één mashmellow nu, of als je een kwartier wacht met opeten, krijg je er twee. Tot aan circa vier jaar eten ze het enkele exemplaar, en voorbij het vierde levensjaar wachten ze bijna allemaal op de twee exemplaren. De eerste keuze is die van hersenstam, de tweede die van de cortex. Ergens rond het vierde levensjaar is de functionaliteit ontwikkeld om beide keuzen te kunnen afwegen, vermoedelijk door het ingeschakeld raken van de cingulate cortex - het kind leert zichzelf dan de tweede keuze aan. Dat hierbij diepgaande processen spelen, blijkt uit de gezichtsuitdrukking van kinderen in het experiment, bij degenen zo rond hun vierde levensjaar.En dat dit geen specifiek menselijk proces is, bewijzen de beelden in de volgende bron  .

Een andere aanwijzing voor het kunnen aanpassen van de analysefunctie ligt in de ervaringen van gelovigen die afvallen. Het streng opgevoed zijn in een geloof leidt tot het uitgefilterd raken van een groot aantal realiteiten, zoals het tsunami-voorbeeld al heeft laten zien Maar ook streng opgevoede gelovigen kunnen van de programmering af komen, wat dan voor intelligentere personen een periode van ongeveer vijf jaar kost => .

Natuurlijk kunnen hiervoor ook andere verklaringen zijn dan het in dit artikel geschetste model. Het uitgangspunt van die andere verklaringen moet dan wel leiden tot minstens net zo veel samenhang tussen de diverse bekende waargenomen fenomenen, zoals deze laatste, als het hier geschetste model.


 











 





Van de entorhinal cortex, deel van de neocortex, is de functie bij ratten redelijk bekend: daarin wordt de ruimtelijke informatie verwerkt - vermoedelijk dus tot een ruimtelijk, drie-dimensionaal, beeld van de omgeving. Merk dat alle primaire informatie van de waarnemingsorganen  slechts enkelvoudige "getallen" zijn: er is zoveel geluid gehoord van deze frequenties - er is zoveel licht gedetecteerd door die en die oogcellen. Alle ruimtelijke gegevens omtrent deze cijfers moet geconstrueerd worden in het brein. En dat gaat stap voor stap - voor het oog beginnend in het netvlies, dan voorgezet in superior colliculus, enzovoort.

De ruimtelijke informatie is van cruciaal belang voor het samenstellen en ontwikkelen van waarnemingsindrukken tot gedragspatronen, zowel reeds afgelegd als toekomstig - alhier gedoopt "scenario's". En tevens voor de geheugenvorming, zoals volgt uit experimenten waaruit bleek dat de herinnering aan een gebeurtenis zich afgepeeld hebbende in een bepaalde kamer, verzwakt werd door het verlaten van die kamer en versterkt door de terugkeer ernaar. Dit is ook ervaringskennis uit het dagelijkse leven.

Er zijn dus twee mogelijke locaties voor het min of meer permanente geheugen: in het verlengde van de entorhinal cortex dus naar de neocortex, en in de cingulate cortex.



Dit wat betreft de eerste vraag volgende uit de ervaringen met patiënt H.M. De tweede: hoe komt het geheugen aan de noodzakelijke beoordeling  van de ervaringen die erin worde opgeslagen? Want beoordeling is eigenlijk waar dit hele proces om draait: hoe moet ik mij in de huidige situatie gedragen opdat ik overleef - annex: andere voor het leven noodzakelijke zaken vervuld krijg.

Die taak ligt dus ook bij andere modules en circuits dan die van het hippocampus-complex, aangezien er over patiënt H.M geen sterke karakterwijzingen zijn gemeld - dit in tegenstelling tot een andere beroemd pathologisch geval, dat van spoorwegwerker Phineas Gage  die een ijzeren staaf recht door zijn voorhoofd kreeg en daarvan op wonderlijke wijze genas. Met dus een sterke karakterwijziging (niet noodzakelijkerwijs ten gevolge van de directe schade, maar potentieel ook door het opvolgende ontstekings- en genezingsproces - bij het meer recente geval van Gabrielle Giffords  die door het hoofd geschoten werd, is deze karakterwijziging niet gerapporteerd).



De aanname van de cingulate cortex als (begin van) het meer permanente geheugen is consistent met de ervaringen met patiënt H.M.: zonder hippocampus bleef het bestaande geheugen intact. Maar dit feit heeft nog een tweede gevolg: de hippocampus is dus in ieder geval niet het exclusieve uitvoerkanaal van het geheugen - het is wel waarschijnlijk dat de hippocampus een eigen invoerkanaal vanuit het geheugen heeft, en gezien de noodzakelijke brede informatiestroom, is ook hier die via de fasciolar gyrus waarschijnlijk.]











Ten eerste, en eigenlijk nog in directe aansluiting, zijn er de vragen van hoe de analysator in de hippocampus werkt, en hoe hij actuele waarnemingen associeert met ervaringen uit het geheugen. Een mogelijk mechanisme voor de werking van de analysator is uitgelegd hier  . Die van de associator is onbekend, hoewel het redelijk waarschijnlijk dat het aanzienlijk op het analyse-proces lijkt.

Een van de aspecten van de analysator is dat deze aangepast moet worden aan de hand van opgeslagen ervaringen - dat heet "leren". Waarbij de natuur er vrijwel altijd voor kiest om hiervoor reeds bestaande mechanismen te gebruiken omdat dat minder energie en moeite kost. Dat herijken kan dan dus niet tegelijk met de dagelijkse ;praktijk, waarvoor dus dient het verschijnsel "slaap". Op zijn minst een deel van de dromen in die slaap zijn ervoor om het beoordelingssysteem testen en te ijken.



Al deze elementen moeten een simpele functie hebben - de ingewikkeldheid zit in de combinatie Dat is de manier waarop de natuur werkt en moet werken: de natuur kan niet ontwerpen: ze bouwt voort op wat werkt, en wat werkte kan aanvankelijk niet al te ingewikkeld zijn. er zijn hier veel elementen zichtbaar, en die elementen moeten op één of andere manier samen iets doen. Een bekende manier om dat te versimpelen, is te veronderstellen dat ze dat sequentieel doen: dit systeem handelt achtereenvolgende fasen af van het algehele proces van waarnemingen en evaluatie. Dat kunnen dus de meer subtiele beslissingen zijn die komen als de keuze uit de vier basale geen uitsluitsel geeft omdat de situatie van de werkelijkheid ingewikkelder is dan de keuze tussen vechten, vluchten, bevriezen of erop afgaan.

Het bestaan van een sequentiële afhandeling is in overeenstemming met de filteringfunctie van hippocampus en de veronderstelde filteringfunctie van basale ganglia. Daar bovenop wordt nu nog een veronderstelling gedaan, waarvoor een redelijke hoeveelheid aanwijzingen bestaan: Het totale verwerkingsproces is een sequentieel proces, dat een begin en einde heeft en voortdurend herhaald wordt.
    De sterkste van de aanwijzingen daarvoor is het verschijnsel van epilepsie en de relatie ervan met de hippocampus. Epilepsie wordt algemeen gezien als een uit de hand lopen van een of ander teruggekoppeld proces, gewoonlijk vertaald als een storm van golven die de hersenen lam leggen. Waar bijkomt dat epileptische verschijnselen opgewekt kunnen worden door niets anders dan een snelle sequentie van lichtflitsen, of plotselinge licht-donker overgangen - op zich een vorm van oscillatie net als een golfverschijnsel in feite een oscillatie is. Uit vele sectoren van de techniek is bekend dat je een oscillatie opwekt door een andere oscillatie met frequenties in de buurt van degene die je wilt opwekken. Oftewel: de lichtflitsen met typisch een frequentie van enkel tot een tiental per seconde wekken verschijnselen in de hersenen op met enkele tot iets als een tiental per seconde.

De frequentie van dit interne verschijnsel wordt hier verondersteld te zijn de frequentie van het algehele verwerkingsproces in de emotionele hersenen.

Dit proces heeft hoogstvermoedelijk geen vaste frequentie zoals dat het geval zou zijn in een computer - het wordt gedreven naar behoefte: zijn er dringende signalen van het waarnemingssysteem, gaat de frequentie omhoog - en komt weer tot rust als de noodsituatie is afgelopen. Dit komt overeen met bekende verschijnsel van de menselijke tijdsbeleving: die kan tot een factor drie en meer afwijken van de realiteit als het spannend wordt.

Het proces van de aanpassing van de frequentie verloopt automatisch: bij urgenter situaties wordt eerder in het proces van filtering het punt van afbreken bereikt. Dat is potentieel de functie van de terugkoppelingsbruggen van de caudate nucleus: bij sterkere signalen wordt er bij de eerste brug teruggekoppeld naar de putamen dat dit niveau is bereikt, en de sequentie afgebroken - bij minder urgenter situaties gebeurt dit pas bij latere bruggen. Enzovoort.

Een aantal van deze associaties is al oud, en dat gaf ook de aanleiding om bij patiënt H.M. die ernstige aanvallen van epilepsie had, om de beide hippocampi te verwijderen. Het verhaal over het verliezen van geheugen is bekend genoeg, maar meestal niet vermeld is of de epilepsie inderdaad werd verholpen. Uit het geheel kan afgeleid worden dat dat inderdaad grotendeels het geval was, en de relatie tussen epilepsie en de hippocampus wordt nog steeds gelegd. Waarbij het overigens niet noodzakelijk is dat het de hippocampus is die de bronoorzaak is, want ook hierin, net als bij het geheugen, kan de hippocampus slechts het doorgeefluik zijn.






 



Dit is een (zeldzame) frontale doorsnede, ter hoogte van het basal forebrain - zichtbaar als bovenste groen: caudate nucleus, groen daaronder: putamen en daarbinnen globus pallidus, geel: septal nucei, wit: de anterior commissure, de voorste bundel verbindingen tussen linker- en rechterhelft van de cortex, paars: basal nucleus region, rood: amygdala, en blauw (rechts deels weggesneden): substantia innominata.

De veronderstelling is deze: tijdens de slaap worden uit het geheugen eerder ondergane scenario's opgehaald. Die scenario's zijn geen geïntegreerde beelden, maar combinaties van abstracte concepten zoals "mens", "vrouw", "blond" enzovoort voor de omschrijving van een enkele vrouw. En dit dus voor aspecten van alle opgeslagen scenario's. Die samengestelde en samenhangende bundels van concepten worden toegevoerd aan een onregelmatig gebied, waaruit nieuwe bundels van minder- , weinig- tot niet-samenhangende concepten ontspruiten. Die weinig- tot niet-samenhangende bundels worde gevoerd aan het herkenningssysteem, dat geijkt wordt op het niet-herkennen ervan als "bestaande werkelijkheid". Die weinig- tot onsamenhangende bundels van concepten spelen zich af tijdens de slaap. Maak je iemand wakker, rapporteert hij de aanwezigheid van deze bundels als "dromen".

Tijdens de waakzame periode van het brein wordt dit gebied natuurlijk uitgeschakeld. Maar alle onderdelen van het brein kunnend disfunctioneren, dus ook het in- en uitschakelen van dit gebied. Raakt het ingeschakeld, moeten  mensen bijzonder eigenaardige gewaarwordingen krijgen. Die voor hen op dat moment even reëel zijn als daadwerkelijke gewaarwordingen, omdat daadwerkelijke gewaarwordingen ook n iets meer zijn dan stromen informatie in het brein. Dit komt overeen met de bekende verschijnselen van psychose en schizofrenie.

Er is een tweede aanwijzing voor het geschetste model van functionaliteiten. Die volgt uit de verschijnselen waargenomen bij herseninfarcten aan de anterior communicating artery (ACoA). Er zijn twee effecten (memorylossonline.com, by Daniel Pendick uitleg of detail ):
  The patients that DeLuca works with confabulate because of a rupture in a tiny blood vessel in the brain called the anterior communicating artery (ACoA). The rupture of this tiny artery temporarily cuts off the normal flow of oxygenated blood to areas of the brain that are essential to the proper recall of memories. The damage caused by an ACoA rupture can vary from one person to another, both in the location and the degree of damage. And the symptoms are also diverse: the person can suffer memory impairment alone, or memory impairment accompanied by confabulation.

Het geheugenverlies laat zien dat de getroffen gebieden in de informatiestroom naar het geheugen liggen:
  For reasons not entirely clear, damage to the basal forebrain can impair the ability to form lasting memories from recent experiences

Het basal forebrain is het gebied waar we het hier over hebben.

 Het confabuleren, oftewel: het vertellen van verhalen zonder waarheidsgehalte en verminderde samenhang zonder dat de betrokkene zich daar ook maar enigszins bewust van is, is een aanwijzing dat er in de informatiestroom een stap aanwezig is dat al dan niet zorgt voor die samenhang.

Tijd voor een tweede tussentijdse samenvatting: wat nu compleet is, zijn alle elementen die noodzakelijk zijn voor het beoordelen tijdens de dag van waarnemingen en mogelijke handelingen, scenario's, aan de hand van opgeslagen en tijdens een veilig moment verder verwerkte en geanalyseerd eerdere ervaringen.

Deze aanpak biedt natuurlijk veel meer ruimte voor variatie in gedrag dan de relatief simpele recepten van het reflexensysteem van ruggemerg en hersenstam. De vermoedelijk belangrijkste vormen van nieuw subtieler gedrag zijn groepsvorming en samenwerking.

Het leven in groepen heeft diverse voordelen die het ontstaan ervan verklaren: meer ogen dus eerder waarschuwingen voor gevaar, meer neuzen, dus eerder de geur van voedsel, enzovoort. In een verdere fase het delen van voedsel: het individu houdt beschikbaar voedsel niet voor zichzelf, maar laat dit over aan een groepsgenoot die er meer mee gediend is. Zodat deze overleefd en later jou weer kan helpen, zodat de nettosom voor beiden over langere tijden positief is.

En dit geldt in versterkte mate voor het nakomelingenschap: vissen doen al een aantal dingen goed ten opzichte van voorgaande wezens, maar gewoon je eitjes laten vallen in een kuiltje en dan wat zaad erover heen, is duidelijk weinig effectief in het overbrengen van in het harde leven geleerde ervaringen.

Ook groepsvorming en samenwerking moeten als boodschappen overgebracht worden in het zenuwstelsel,dat niets anders is dan een verzameling neuronen, met verbindingen tussen de neuronen, die werken door de doorgave van signaalstoffen. Kortom: er zijn ook nieuwe signaalstoffen, nieuwe, zeg maat "tertiaire" neurotransmitters nodig (primair: glutamaat en GABA, secundair: dopamine enz.). Daarvan is er voor het uitgebreidere emotionele systeem een uitgebreide lijst: orexine, oxytocine, vasopressine, enzovoort, waarvan er een paar behandeld worden aan de hand van wat er tot nu toe over bekend is. Merk daarbij op dat de literatuur talloze zaken op één hoop gooit,door alles te noemen waarbij de betrokken stof betrokken is. Daarin dient één essentiële schifting gemaakt te worden: de rol als neurotransmitter of die als hormoon. Als neurotransmitter werkt de stof alleen op die plaatsen, andere neuronen, waar de betreffende stof door middel van axonen naar toe wordt geleid. Als hormoon komt het in de bloedbaan en activeert het dus alle plaatsen die gevoelig zijn voor het hormoon. Als er bij een stof vermeld, is dat het bloeddrukverlagend werkt en dat het zorgt voor partnerbinding, en beide slaan op de werking als hormoon, treden beide tegelijk op. Of beide tegelijk niet. Dus vele in de literatuur genoemde combinaties kunnen doodgewoon niet. Bij het lezen dient altijd zorgvuldig in de gaten gehouden te worden over welke rol men het heeft, en eigenlijk is informatie zonder deze scheiding onbetrouwbaar.

De bekendste tertiaire emotie-neurotransmitter is oxytocine  (Wikipedia), aanvankelijk ook wel gedoopt tot "knuffelhormoon"  . Dat was omdat aangetoond werd dat het knuffelen van baby's door de moeder dit hormoon vrijmaakt. Wat vermoedelijk dus, net als bij angst en die uitspraak van William James, andersom ligt: omdat het hormoon wordt vrijgemaakt, knuffelt de moeder de baby. Iets dat dus ook zal gelden voor alle andere emotie-neurotransmitters/hormonen.
    Er is in de literatuur geen specifiek orgaan of kern gevonden die de oxytocine-neuronen in de hypothalamus activeert.
    Relatief kort na de benoeming van oxytocine als "knuffelhormoon",  en op het moment schrijven, 2013, zeer recent, kwam er een koude douche voor de meer ideologisch ingestelden in dat oxytocine ook actief bleek bij het optreden van conflicten tussen groepen. Waarop de nuchtere conclusie kan worden getrokken dat oxytocine doodgewoon de neuromodulator is betrokken bij het proces van "binding tot" - moeder tot kind, voetbalsupporter tot club eb supportersvereniging, enzovoort. En het bestaan van groepen houdt automatisch het bestaan van niet-leden van de groep in. Die dus geen deel hebben aan de binding. En waarvoor dus de primitievere impulsen gelden: "onbekend" is "(potentieel) gevaar". Experimenten gericht om aan te tonen dat mensen naargeestig tegen elkaar kunnen gaan toen als je ze indeelt in zichtbaar onderscheidbare groepen, gaan in feite over de werking van oxytocine. Het feit dat dit soort experimenten tot nu toe altijd bij blanken zijn gedaan, en de uitkomsten altijd met blanken worden geassocieerd onder gebruik van de ter"men 'xenofobie" en "racisme", is ook een gevolg van de werking van oxytocine: de groep die dit doet, sociologen en aanverwante en dat wil zeggen: hogeropgeleiden, is ook een sociale groep, en die sociale groep keert zich tegen mensen van buiten hun sociale groep: de (blanke) lageropgeleiden.

De mate van groepsvorming is ook een vrijwel directe, dat wil zeggen: zonder een tussenstap via de psychologie, sociologische, maatschappijbepalende, factor. De route binnen de hiërarchie van deze website is neurologie: neurotransmitter oxytocine->  psychologie: bindingsgevoel -> sociologie: groepsbinding en samenwerking. De bekende stelling bij bepaalde groepen politici en economen dat de mens in principe een concurrerend en individualistisch wezen is, is volstrekt onjuist. Bewezen door het bestaan en de fundamentele rol van oxytocine.

De tweede hier behandelde emotie-neurotransmitter, vasopressine, is nauw verwant, biochemisch en qua functie, met oxytocine - het wordt ook wel "de mannelijke variant van oxytocine" genoemd. Vasopressine wordt geassocieerd met monogamie, mede naar aanleiding van onderzoek aan de prairie vole (prairie woelmuis)  , een knaagdiersoort uit Amerika, die zich onderscheidt van nauwe verwanten door monogamie. Onderzoeken hebben beide kanten op aangetoond de relatie tussen de werking van vasopressine en monogamie. Het betrokken emotie-orgaan wordt genoemd als (hoogstwaarschijnlijk) het ventral pallidum (de globus pallidus wordt ook wel genoemd het dorsal pallidum ("meer naar achter") en het ventral betekent "meer naar voren") en is een deel van het basal forebrain in de buurt van de substantia innominata - zei de illustratie met de verticale doorsnede boven.

De uitkomst van die experimenten is samen te vatten als "er is een directe connectie is tussen monogamie en een prominente rol van vasopressine". aangezien dit deel van de hersenen een grote overeenkomst vertoont binnen alle zoogdieren, zal dat ook gelden voor de toepasbaarheid en de uitkomsten van dit soort experimenten. Bij de soort homo sapiens zijn er ook duidelijke verschillen tussen etnieën aangaande monogamie. De ervaringen met de soort homo sapiens laten ook de overeenkomst zie tussen oxytocine en vasopresssine, omdat bij de groep waar vasopressine minder actief lijkt (de creolen  ), ook de groepsbinding en dus de oxytocine minder lijkt te werken.

Oxytocine en vasopressine gaan duidelijk over de meer primaire emoties waar een mens (en dier!) aan onderhevig is. In ieder geval bij de mens zijn er meer, of veel meer, en ook wat subtielere emoties. de uitgebreide behandeling daarvan neigt naar de psychologie in plaats van de neurologie, en zal hier verder overgeslagen worden. Nog even aangestipt wordt de vraag van een mogelijke één-op-één relatie: het zou een aantrekkelijke want versimpelende zaak zijn als de (basis)emoties één-op-één verbonden konden worden aan ieder hun eigen neurotransmitter. het is vooralsnog onduidelijk of dit zo is.





De clou van deze opbouw is dat het verbindingssysteem tussen de drie lagen wordt opgebouwd met primaire neurotransmitters, zodat zowel emotie-organen als cortex direct kunnen aanturen met modulerende neurotransmitters, en ook de hersenstam de zaak, in geval van nood, de zaak kan overnemen door de signalen van die kant te blokkeren.





Tijd voor een tweede tussentijdse samenvatting:  Sinds de vorige, aan het einde van de invoering van geheugen en ervaring als manier om tijdens het leven aanpasbare beslissingen te maken, zijn diverse elementen toegevoegd die noodzakelijk zijn in het proces van wat in feite "leren"is, maar nog steeds beperkt tot de keuzen zoals ook geformuleerd voor de hersenstam. de grotere aanpassingmogelijkheden maken natuurlijk ook een ruimere keus aan mogelijke acties mogelijk - ze hoeven niet meer allemaal in vastgelegde regels in het genenpatroon worden bewaard. Wat samengaat met twee andere essentie evolutionaire factoren: het samenleven in groepen, en de zorg voor het nakomelingenschap.





De functie van de omliggende organen: globus pallidus, putamen en caudate nucleus, bestaat (net als de oorspronkelijke functie van thalamus voor het doorgeefluik werd) veel onduidelijk over, waarbij men het veel heeft over gedrag. Er worden wel drie aanwijzingen gegeven aangaande putamen en caudate nucleus tezamen als striatum: het striatum verbindt alleen met andere basale ganglia (met name de globus pallidus), het striatum geeft alleen inhiberende signalen af, en het striatum heeft geen eigen activiteit (gevolg van het voorgaande - die activeren functie in de vorm van activerende axonen komt van de subthalamic nucleus). Alle drie nogal eigenaardige eigenschappen, behalve als je het striatum de functie van "geheugen" toekent: geheugen is iets statisch, waar wel met regelmaat toeging tot nodig is, voor opslag of ophalen. Die opslag betreft de korte-termijnopslag aan een reeks bewegingen, van gedragingen, of scenario's. Zodat niet voor elke bewegingsstap opnieuw alles overwogen moet worden, maar er een enkele overweging is omtrent een reeks achtereenvolgende bewegingen, die min of meer automatisch op elkaar volgen uitleg of detail . Een vierde bewijs voor deze veronderstelling volgt zo meteen.

Want nog mooier is het natuurlijk wanneer deze groeperingen van bewegingen, handelingen, scenario's, op langere termijn opgeslagen kunnen worden. Misschien niet in alle detail, maar de basale stappen ervan. Die functie bestaat natuurlijk, en de locatie waar dat begint, is volkomen bekend: dat is de hippocampus  (Wikipedia)   .


Dat "volkomen bekend zijn" is het gevolg van de geschiedenis van patiënt H.M. uitleg of detail , bij wie ten gevolge van hevige epileptische aanvallen de hippocampus is verwijderd, in tijden dat men nog veel minder wist dan nu. Die verwijdering betekende dat H.M. nog alles wist van het verleden, en alles kon herinneren van het laatste half uur van zijn leven, maar geen nieuwe herinneringen kon onthouden. De combinatie laat zien dat de hippocampus de plaats is waar lange-termijn opslag wordt bepaald, maar niet waar het definitief wordt opgeslagen.



Van die scenario's is tot nu toe alleen de feitelijke reeks handelingen genoemd. Wat daaraan ontbreekt is de waardering van het resultaat van die handelingen. Belangrijk als je tussen meerdere moet kiezen. Bij de waardring van scenario's komt eigenlijk hetzelfde om de hoek kijken als bij de waardering van losse bewegingen of handelingen, maar dan op een wat langere termijn en misschien wat abstracter vlak. De overeenkomt betekent, vrijwel vanzelfsprekend, het hergebruik van de al bestaande "waardering" of normeringsmethoden: die van de neuromodulatoren van de hersenstam. Dat wordt gedaan door speciale normeringsorganen die gewoonlijk niet tot de basale ganglia worden gerekend maar wel tot het limbische systeem: de amygdala ("amandelvormige kern") en de nucleus accumbens ("aanliggende kern" - hij ligt net buiten de directe locatie van de basale ganglia).


De functionele eschrijvingen van de amygdala gebruiken veelal terminologie als: "De amygdala reageert op emoties ..." of "De amygdala legt emoties vast ...". Deze beschrijvingen lijden in diverse mate aan het misverstand voorafgaande aan de omkering van William James: "Je loopt niet weg omdat je bang bent, maar je bent bang omdat je weg loopt". Oftewel: voordat de emoties in het spel komen, is er al gedrag of de impuls daartoe. Maar omdat de koppeling tussen het gedrag en de gevolgen met behulp van het begrip "angst" is vastgelegd in het geheugen, is aan een toekomstige of voorgenomen handeling het begrip verbonden: "angst". Op dat moment, het moment dat de handeling of scenario nog in de toekomst ligt, is het begrip "angst" geboren zoals het zich normliter voordoet aan de bewuste mens. "Ik ben bang" vertaald zich "Mijn geheugen voorziet mogelijke gevaren verbonden aan een mogelijke toekomstige handeling of scenario".

De oorspronkelijke bron van "angst" is dus vermijding. Het tegenovergestelde van vermijding is "aantrekking". Dit slaat voor levende wezens op voedingsbronnen, voorplanting, en veiligheid. Dat laats staat op de derde plaats omdat het ervoor het merendeel al voorzien is in "vermijding", maar er zijn situaties waarin geen direct gevaar dreigt maar wel gunstig zijn om toekomstig gevaar te verminderen. Een primitieve vorm is de schaal van schaaldieren. Of dus het "hol", de schuilplaats, van zeer vele dieren. Gedrag dat leidt tot de wenselijke zaken: voedingsbronnen, voortplanting, of veiligheid moet een positief stempel krijgen. Dat positieve stempel, wat betreft scenario's, wordt verschaft door de nucleus accumbens, en door de in dit verband minder genoemde septal nuclei. Eerst een overzicht met de nucleus accumbens (de verdere strcutruen komen verderop aan de beurt):



Het waak-slaapritme lijkt een dusdanig fundamentele zaak, dat behandeling bij de hersenstam logischer lijkt. Hier hebben we er toch gekozen om dit te doen bij de emotie-organen, vanwege de belangrijkste impact van het verschil tussen waken en slapen: de omgang met bewustzijn en met name geheugen. Nog maar enkele decennia geleden dat men dat slaap voornamelijk bestond uit rust, niets-doen. Onderbroken door een beetje dromen. Niets is minder waar: gedurende de slaap zijn de hersenen bijna even actief, alleen met andere dingen. Het wordt nu redelijk algemeen aangenomen dat gedurende de slaap de ervaringen van gedurende de dag verwerkt worden. En dat dat een essentiële functie is. proeven met varkens die uit hun slaap gehouden werden, leidden tot gedrag dat bij mensen als "krankzinnig" zou worden omschreven. Zeezoogdieren zouden makkelijker af zijn zonder slaap, maar het is essentieel. De oplossing: zeezoogdieren slapen om en om met hun linker- en hun rechter hersenhelft.
    Een tweede belangrijke functie is bekend bij iedereen die zich wel eens droom-episodes heeft herinnerd (oh ja, vroeger dacht men ook dat er allen dromen waren als men zich die herinnerd had), namelijk die van prognose: er worden niet alleen scenario's uit de werkelijkheid herhaald, maar ook scenario's met variaties op die werkelijkheid. En scenario's die verder spelen op de zich werkelijke voorgedane, en weer met variaties. Allemaal met een volkomen heldere winst, dus een volkomen helder doel: wie enig idee heeft van wat er als vervolg op een bepaald scenario gaat gebeuren, is in het voordeel als er zich daadwerkelijk zo'n scenario voordoet.






Alles wat tot nu bekend is, is dus in overeenstemming met het idee dat de emotionele organen draaien om het verwerven en opslaan van scenario's. Met de basale ganglia tijdelijke opslag en afspeelplaats, de hippocampus als tweede, semi-permanente opslag of geheugen van de belangrijkste delen van die scenario's, en de slaap als een omkering van dit proces waarbij de in de hippocampus opgeslagen scenario's worden geherevalueerd, in de basale ganglia, en eventueel definitief opgeslagen in de de permanente opslag in de cortex. Welke uitvoering voor een belangrijk deel ingegeven wordt door de enormiteit van de hoeveelheid informatie die opgeslagen moet worden: een hele stroom van waarnemingen en successievelijke handelingen van talloze onderdelen van het lichaam. Wat blijkt uit de meetbare beperkingen: de tijdelijke opslag is groot genoeg voor 20 minuten tot een half uur (ervaringen met patiënt H.M., en bekende gegevens over de aandachtsspan in bijvoorbeeld onderwijs), en de hippocampus is zo'n beetje vol na een paar dagen, met een optimum rond een dag. Daarna moet het systeem gedurende de slaap omgeschakeld worden zodat er weer verse ruimte komt in de hippocampus. Dat de opslag plaats vindt inde vorm van scenario's en niet als losse feiten, wordt ondersteund door talloze observaties uit de psychologie, zoals het associatieve karakter van het oproepen van herinneringen, en de erkende waarde van het leren bij kinderen met gebruik van handelingen naast denken.

De beschrijving tot nu toe slaat op de toestand zoals aangetroffen in de moderne mens. Daaraan is een lange ontwikkeling voorafgegaan. Dit is natuurlijk allemaal begonnen met veel minder opslag en veel kortere termijnen. En veel simpeler utkomsten: dat doe je wel en dat doe je niet - signalen te associëren met de vier neuromodulatoren uit de hersenstam . Maar naarmate de opgeslagen termijn langer wordt, wordt het effectiever om meer mogelijkheden te overwegen en meer variatie in gedrag te verwerven. Dan ben je als wezen aanpasbaarder aan veranderingen in de natuur. Wat samengaat met twee andere essentie evolutionaire factoren: het samenleven in groepen, en de zorg voor het nakomelingenschap.
    Het leven in groepen gaat over andere gedragingen meer dan alleen "voedsel" en "gevaar". Natuurlijk komt veel er uiteindelijk wel weer op neer, maar leven in een groep betekent bijvoorbeeld dat je beschikbaar voedsel niet tot je neemt, maar overlaat aan een groepsgenoot die er meer mee gediend is. Zodat deze overleefd en later jou weer kan helpen, maar toch is dit meer.
    En dit geldt in versterkte mate voor het nakomelingenschap: vissen doen al een aantal dingen goed ten opzichte van voorgaande wezens, maar gewoon je eitjes laten vallen in een kuiltje en dan wat zaad erover heen, is duidelijk weinig effectief in het overbrengen van in het harde leven geleerde ervaringen.





De tweede emotie-neurotransmitter, vasopressine, is nauw verwant, biochemisch en qua functie, met de eerste - het wordt ook wel "de mannelijke variant van oxytocine" genoemd. Vasopressine wordt geassocieerd met monogamie, mede naar aanleiding van onderzoek aan de prairie vole (prairie woelmuis)  , een knaagdiersoort uit Amerika, die zich onderscheidt van nauwe verwanten door monogamie. Onderzoeken hebben beide kanten op aangetoond de relatie tussen de werking van vasopressine en monogamie. Het betrokken emotie-orgaan is (hoogstwaarschijnlijk) het ventral pallidum (de globus pallidus wordt ook wel genoemd het dorsal pallidum) - het ventral pallidum wordt ook wel gezien als een deel van de substantia innominata, wat weer een deel is van de basal forebrain - zei de illustratie onder: 


Dit is een (zeldzame) frontale doorsnede, ter hoogte van het basal forebrain - zichtbaar als bovenste groen: caudate nucleus, groen daaronder: putamen en daarbinnen globus pallidus, geel: septal nucei, wit: de anterior commissure, de voorste bundel verbindingen tussen linker- en rechterhelft van de cortex, paars: basal nucleus region, rood: amygdala, en blauw (rechts deels weggesneden): substanbtia innominata, met daarin dus het ventrale (buikliggende) pallidum.

Histamine
(Wikip.) Sleep regulationHistamine is released as a neurotransmitter. The cell bodies of histaminergics, the neurons which release histamine, are found in the posterior hypothalamus, in various tuberomammillary nuclei. From here, these neurons project throughout the brain, to the cortex through the medial forebrain bundle. Histaminergic action is known to modulate sleep. Classically, antihistamines (H1 histamine receptor antagonists) produce sleep. Likewise, destruction of histamine releasing neurons, or inhibition of histamine synthesis leads to an inability to maintain vigilance. Finally, H3 receptor antagonists increase wakefulness.

It has been shown that histaminergic cells have the most wakefulness-related firing pattern of any neuronal type thus far recorded. They fire rapidly during waking, fire more slowly during periods of relaxation/tiredness and completely stop firing during REM and NREM (non-REM) sleep. Histaminergic cells can be recorded firing just before an animal shows signs of waking.


(engelse wikipedia, ventral pallidum, innominata)

    Van het ventral pallidum wordt ook vermeld dat het een geheugenfunctie heeft. Dat is binnen de interpretatie hier van geheugenvorming middels scenario's dus alleen maar het geval dat bij de scenario's ook de output van het ventral pallidum wordt geregistreerd.


Bij hersenstam pijn: nocicpetion: http://en.wikipedia.org/wiki/Nociception
Via nociception: peri-aqueductal_grey: http://en.wikipedia.org/wiki/Periaqueductal_grey (of: central grey) Zie opmerking over bewustzijn. (kan daar uitgeschakeld worden -voor noodgevallen?)



De functionele beschrijvingen van de amygdala gebruiken veelal terminologie als: "De amygdala reageert op emoties ..." of "De amygdala legt emoties vast ...". Deze beschrijvingen lijden in diverse mate aan het misverstand voorafgaande aan de omkering van William James: "Je loopt niet weg omdat je bang bent, maar je bent bang omdat je weg loopt". Oftewel: voordat de emoties in het spel komen, is er al gedrag of de impuls daartoe.
    Dit laatste gedrag komt van de hersenstam en is grotendeels genetisch vastgelegd. De emotionele organen (her)evalueren dat gedrag. Dat wil zeggen: ze slaan de combinatie van waarnemingen, resulterend gedrag, en effecten van dat gedrag op, en voorzien het van een nieuw waarderingssysteem. Het nieuwe waarderingssysteem is wat wij "emoties" noemen. Dit waarderingssysteem gebruikt, net als het oude, biochemische indicatoren, de bekende neuro-hormonen als dopamine, serotonine, enzovoort - daartoe is de amygdala verbonden met de diverse kernen en gebieden in de top van de hersenstam die die stoffen afscheiden - zie bijvoorbeeld bij deze beschrijving van de substantia negra  (het compacta deel).
    De amygdala lijkt dus het centrum te zijn van de koppeling van acties met waardering. Het terugspelen van een vastgelegde negatieve waardering bij een bepaalde reeks impulsen vanuit het waarnemingssysteem met eerdere, vastgelegde, soortgelijke patronen van impulsen, heet "angst" - het staat voor de eerdere keren dat het waargenomen patroon heeft geleid tot vermijding of vlucht ("Beer vluchten!").  (Wikipedia)




   



Het al genoemde genotscentrum, de nucleus accumbens uitleg of detail , is ondanks zijn geringe omvang één van de belangrijkere onderdelen van de emotionele hersenen - of misschien correcter: het heeft één van de voor de mens meest begrijpelijke functies: de motivatie. Het gevoel van genot heeft evolutionair geen enkel ander doel in dat het het wezen motiveert om bepaald gedrag te herhalen: seks is zo plezierig, om ervoor te zorgen dat een individu het zo vaak mogelijk doet. Dit alles voor zo veel mogelijk voortplanting en nageslacht (of misschien beter: soorten waarin dit niet is ingebouwd, worden overvleugeld of overleven minder, en sterven uit - als alle andere factoren gelijk zijn).
    Bekend is een experiment waarin ratten door op een pedaaltje te trappen de accumbens direct konden stimuleren - ze deden op den duur niets anders meer, met het voorbijgaan van eten  - in feite hetzelfde gedrag dat een willekeurige menselijke verslaafde vertoont, die voor de stimulans van de accumbens andere neurotransmitter-achtige stoffen slikt of spuit, zoals heroïne en cocaïne.


Wat de beschrijving van de hersenstam heeft laten zien is dat specifieke neuronale structuren horen bij specifieke functies, en ook bij de afscheiding van specifieke neurotransmitters: substantia negra: dopamine, locus ceruleus: noradrenaline, raphe nuclei: serotonine, enzovoort. Welke structuren weer gestimuleerd worden door specifieke emotionele organen. Waarna deze lijn doorgetrokken kan worden door de emotionele organen ook te associëren met specifieke functies, of de onderdelen van die organen. Zo is inmiddels bekend dat tijdens leerproefjes waarbij ter stimulering straf wordt gegeven, formeel: "negatieve prikkels", een bepaalde kern binnen de amygdala gestimuleerd wordt, en bij hetzelfde proefje met positieve stimulering, een andere kern (bron: verloren gegaan - een populair-wetenschappelijk blad). En op een wat hoger niveau: dat vluchtgedrag op een andere plaats gecoördineerd wordt dan aantrekkingsgedrag - met name geldend natuurlijk voor gedragingen die mensen kwalificeren als "instinctief". Deze ingeprogrammeerde gedragingen zouden heel wel kunnen zetelen in de basale ganglia-structuren als globus pallidus, putamen en caudate nucleus. Waarna men de vraag kan stellen waarom die onderdelen bij de mens er nog zitten want daarvoor hebben we toch de grote hersenen? Het antwoord zijnde dat instinctieve gedragingen veel sneller zijn dan die opgewekt door de grote hersenen. Wat je nog verder kan opsplitsen in drieën: reflexmatig van de hersenstam, instinctief van de emotionele organen, en reflexief van de grote hersenen.

Bij een situatie waarin diverse organen zorgen voor diverse soorten gedragingen, zal er zich op een gegeven moment ook situaties kunnen voordoen waarin twee van de impulsen elkaar tegenspreken. Een veelvoorkomend geval is dat van gevaar en nieuwsgierigheid: bij een onbekende situatie kunnen beide voordelig zijn, en moet er dus afgewogen worden - in menselijke termen: een beslissing worden genomen. Een onderzocht geval is dat van vogels en een voederplaats: de vogel die snel op de voederplaats is, heeft de eerste lekkerste of enige hapjes. Maar valt ook  als eerste ten prooi aan de poes. De oplossing die de natuur gekozen heeft is dat binnen de soort twee , of meerdere groepen zijn die dominant het ene of andere gedrag vertonen: er zijn voorzichtige mussen, en er zijn brutale mussen - dat verzekert dat als de algemene natuurlijke omstandigheden snel veranderen, er altijd een groep is die overleeft. Bij mensen, met hun grote variatie in mogelijk gedrag, noemt men dit "karakter". Een kenmerk dat het gevolg is van het ingestelde evenwicht tussen de emotionele organen, en dus niet erg veranderlijk is. Zoals ook steeds meer onderzoek bij de mens uitwijst: het geluksgevoel dat mensen kennen blijkt ook bij sterk wisselende sociale omstandigheden redelijk constant.

Ook de drie globale onderdelen van de hersenen moeten hun activiteiten natuurlijk wel zo goed mogelijk coördineren. Zoals al gezien voor de combinatie hersenstam-"emotie organen" moeten er dus ook intensieve verbindingen, heen-en-weer, zijn met de cortex. een hoofdrol daarin lijkt te spelen de thalamus, vanwaar talloze verbindingen naar secties van de cortex. Ook het vlakke dus centrumloze septum pellucidem, dat lagen neuronen bevat die verbonden zijn met zowel de emotie-organen als de cortex, lijkt een dergelijke rol te spelen, zie hier  (functie) en hier  (locatie). Voor een illustratie van een aantal van de bijpassende neuron-circuits, zie rechts (van hier    - GP(e/i): globus pallidus, STN: subthalamische kern, SN(c/r): substantia negra).

En er zijn steeds meer aanwijzingen dat een speciale rol daarin gespeeld wordt door de anatomische en vermoedelijk ook evolutionair onderste laag van de cortex: de cingulate cortex  - vaak gezien als behorend tot het limbische systeem en ook zichtbaar in de laatste overzichten daarvan. De werking van dit, of een soortgelijke functie hebbend, orgaan is goed te zien in de inmiddels wijd verspreide beelden  van het zogenaamde "marshmellow"-experiment  : kinderen krijgen de keuze voorgelegd tussen één snoepje nú, of twee snoepjes over een kwartiertje. Zo omstreeks het vierde levensjaar gaat de rationele overweging van de dubbele beloning later overwinnen over de instantane, reflexmatige en intuïtieve, gratificatie van het snoepje nu. Iets dat bijvoorbeeld honden nooit zullen leren. Dit is tevens een voorbeeld van het zelf-programmeren dat de hersenen doen.

De mens met zijn bewustzijn is zich gewaar van alle drie de functionaliteiten. Al genoemd is de stelling van William James: "Je loopt niet weg omdat je bang bent, maar je bent bang omdat je wegloopt". Nu wat uitgebreider, na het onverwachte waarnemen van een ander dier: "We staan op het punt te vluchten dus ga, ten eerste, maar eens bang wezen en sla dit op, en ten tweede en daarna, ga er maar eens over nadenken of dat wel terecht is". Wat wel het geval is voor leeuw of beer, maar niet voor hert of zwijn. Die blijken dan later zelf prooi te worden van de mens. Overigens zit ook in de menselijke hersenen nog steeds ingebakken dat het handiger is om uit te gaan van het eerste: angst gaat voor begeerte. En iedereen zou moeten kunnen herkennen wat er gebeurt als je van achteren aangestoten wordt in een menigte: eerst een vermijdende reactie, dan de emotionele schrik ("Leeuw!"), en dan het rationele besef dat het ongetwijfeld een medemens is.


Wordt vervolgd.

Toe te voegen: substantia innominata  en nucleus basalis  .

Leuke plaatjes: zoekterm: symbols of neuron connections

Naar Neurologie, organisatie  , Psychologie lijst  , Psychologie overzicht  , of site home  .
 

 

 3 apr.2012